Quantum correlations in dissipative gain–loss systems across exceptional points

被引:0
|
作者
Federico Roccati
Archak Purkayastha
G. Massimo Palma
Francesco Ciccarello
机构
[1] University of Luxembourg,Department of Physics and Materials Science
[2] Indian Institute of Technology,Department of Physics
[3] Università degli Studi di Palermo,Dipartimento di Fisica e Chimica
[4] NEST,Emilio Segrè
[5] Istituto Nanoscienze-CNR,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the behavior of correlations dynamics in a dissipative gain–loss system. First, we consider a setup made of two coupled lossy oscillators, with one of them subject to a local gain. This provides a more realistic platform to implement parity–time (PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}) symmetry circumventing the implementation of a pure gain. We show how the qualitative dynamics of correlations resembles that for a pure gain–loss setup. The major quantitative effect is that quantum correlations are reduced, while total ones are enhanced. Second, we study the behavior of these correlations across an exceptional point (EP) outside of the PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric regime of parameters, observing how different behaviors across the EP occur only in the transient dynamics. This shows how PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} symmetry plays a relevant role at large times.
引用
收藏
页码:1783 / 1788
页数:5
相关论文
共 50 条
  • [41] Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit
    Chen, Weijian
    Abbasi, Maryam
    Ha, Byung
    Erdamar, Serra
    Joglekar, Yogesh N.
    Murch, Kater W.
    PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [42] Remanent quantum correlations in dissipative qubits
    Nizama, Marco
    Caceres, Manuel O.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (23) : 6155 - 6160
  • [43] iISS gain of dissipative systems
    Jayawardhana, Bayu
    Teel, Andrew R.
    Ryan, Eugene P.
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3532 - +
  • [44] Quantum metric and wave packets at exceptional points in non-Hermitian systems
    Solnyshkov, D. D.
    Leblanc, C.
    Bessonart, L.
    Nalitov, A.
    Ren, Jiahuan
    Liao, Qing
    Li, Feng
    Malpuech, G.
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [45] Exceptional points for parameter estimation in open quantum systems: analysis of the Bloch equations
    Am-Shallem, Morag
    Kosloff, Ronnie
    Moiseyev, Nimrod
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [46] Gain and loss induced higher-order exceptional points in a non-Hermitian electrical circuit
    Shen, Xizhou
    Pan, Keyu
    Wang, Xiumei
    Jiang, Hengxuan
    Zhou, Xingping
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (06)
  • [47] Exceptional Points of Degeneracy in Periodic Coupled Waveguides and the Interplay of Gain and Radiation Loss: Theoretical and Experimental Demonstration
    Abdelshafy, Ahmed F.
    Othman, Mohamed A. K.
    Oshmarin, Dmitry
    Almutawa, Ahmad T.
    Capolino, Filippo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) : 6909 - 6923
  • [48] Quantum Dissipative Systems
    Milburn, G. J.
    CONTEMPORARY PHYSICS, 2014, 55 (01) : 46 - 47
  • [49] Quantum dissipative systems
    Guinea, F
    STRONGLY CORRELATED MAGNETIC AND SUPERCONDUCTING SYSTEMS, 1997, 478 : 249 - 260
  • [50] Dissipative quantum systems
    Ingold, GL
    QUANTUM FLUCTUATIONS, 1997, 63 : 577 - 584