Quantum correlations in dissipative gain–loss systems across exceptional points

被引:0
|
作者
Federico Roccati
Archak Purkayastha
G. Massimo Palma
Francesco Ciccarello
机构
[1] University of Luxembourg,Department of Physics and Materials Science
[2] Indian Institute of Technology,Department of Physics
[3] Università degli Studi di Palermo,Dipartimento di Fisica e Chimica
[4] NEST,Emilio Segrè
[5] Istituto Nanoscienze-CNR,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the behavior of correlations dynamics in a dissipative gain–loss system. First, we consider a setup made of two coupled lossy oscillators, with one of them subject to a local gain. This provides a more realistic platform to implement parity–time (PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}) symmetry circumventing the implementation of a pure gain. We show how the qualitative dynamics of correlations resembles that for a pure gain–loss setup. The major quantitative effect is that quantum correlations are reduced, while total ones are enhanced. Second, we study the behavior of these correlations across an exceptional point (EP) outside of the PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document}-symmetric regime of parameters, observing how different behaviors across the EP occur only in the transient dynamics. This shows how PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}\mathcal{T}$$\end{document} symmetry plays a relevant role at large times.
引用
收藏
页码:1783 / 1788
页数:5
相关论文
共 50 条
  • [21] Exceptional points in Fabry-Perot cavities with spatially distributed gain and loss
    Yang, Yue-De
    Meng, Xiang-Hui
    Hao, You-Zeng
    Ma, Chun-Guang
    Xia, Jin-Long
    Huang, Yong-Zhen
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (04) : 1205 - 1213
  • [22] Absence of Exceptional Points in Square Waveguide Arrays with Apparently Balanced Gain and Loss
    Liu, Zhenzhen
    Zhang, Qiang
    Liu, Xiangli
    Yao, Y.
    Xiao, Jun-Jun
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Theory of Exceptional Points of Degeneracy in Uniform Coupled Waveguides and Balance of Gain and Loss
    Othman, Mohamed A. K.
    Capolino, Filippo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (10) : 5289 - 5302
  • [24] Absence of Exceptional Points in Square Waveguide Arrays with Apparently Balanced Gain and Loss
    Zhenzhen Liu
    Qiang Zhang
    Xiangli Liu
    Y. Yao
    Jun-Jun Xiao
    Scientific Reports, 6
  • [25] Open Quantum Systems with Loss and Gain
    Hichem Eleuch
    Ingrid Rotter
    International Journal of Theoretical Physics, 2015, 54 : 3877 - 3888
  • [26] Open Quantum Systems with Loss and Gain
    Eleuch, Hichem
    Rotter, Ingrid
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3877 - 3888
  • [27] Gain and loss in open quantum systems
    Eleuch, Hichem
    Rotter, Ingrid
    PHYSICAL REVIEW E, 2017, 95 (06)
  • [28] Collectivity, phase transitions, and exceptional points in open quantum systems
    Heiss, W.D.
    Muller, M.
    Rotter, I.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (3 -A): : 2894 - 2901
  • [29] Collectivity, phase transitions, and exceptional points in open quantum systems
    Heiss, WD
    Muller, M
    Rotter, I
    PHYSICAL REVIEW E, 1998, 58 (03): : 2894 - 2901
  • [30] Crossing exceptional points in non-Hermitian quantum systems
    Klauck, Friederike U. J.
    Heinrich, Matthias
    Szameit, Alexander
    Wolterink, Tom A. W.
    SCIENCE ADVANCES, 2025, 11 (02):