A relation between the positive and negative spectra of elliptic operators

被引:0
|
作者
Rowan Killip
Stanislav Molchanov
Oleg Safronov
机构
[1] University of California,Department of Mathematics
[2] University of North Carolina at Charlotte,Department of Mathematics and Statistics
[3] National Research University “Higher School of Economics”,undefined
来源
关键词
Discrete spectrum; Continuous spectrum; Singular sequences; Schrödinger operators; Primary 47F05; 35J30; Secondary 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectral properties of pairs of operators -Δ±V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta \pm V$$\end{document} and show that if their negative spectra are discrete, then their essential spectra fill the positive semi-axis. Analogous statements are proved for more general operators of the form m(i∇)±V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(i\nabla )\pm V$$\end{document} as well as for operators on the lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document}.
引用
收藏
页码:1799 / 1807
页数:8
相关论文
共 50 条
  • [31] The Relation Between Positive and Negative Affect Becomes More Negative in Response to Personally Relevant Events
    Dejonckheere, Egon
    Mestdagh, Merijn
    Verdonck, Stijn
    Lafit, Ginette
    Ceulemans, Eva
    Bastian, Brock
    Kalokerinos, Elise K.
    EMOTION, 2021, 21 (02) : 326 - 336
  • [32] On the approximation of positive operators and the behaviour of the spectra of the approximants
    Rabiger, F
    Wolff, MPH
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 28 (01) : 72 - 86
  • [33] On the approximation of positive operators and the behaviour of the spectra of the approximants
    Frank Räbiger
    Manfred P. H. Wolff
    Integral Equations and Operator Theory, 1997, 28 : 72 - 86
  • [34] Essential spectra of weighted composition operators induced by elliptic automorphisms
    Xing-Tang Dong
    Yong-Xin Gao
    Ze-Hua Zhou
    Mathematische Zeitschrift, 2022, 300 : 2333 - 2348
  • [35] Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds
    Triebel, H
    STUDIA MATHEMATICA, 1999, 134 (02) : 179 - 202
  • [36] Essential spectra of weighted composition operators induced by elliptic automorphisms
    Dong, Xing-Tang
    Gao, Yong-Xin
    Zhou, Ze-Hua
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (03) : 2333 - 2348
  • [37] Spectra and semigroup smoothing for non-elliptic quadratic operators
    Hitrik, Michael
    Pravda-Starov, Karel
    MATHEMATISCHE ANNALEN, 2009, 344 (04) : 801 - 846
  • [38] Spectra and semigroup smoothing for non-elliptic quadratic operators
    Michael Hitrik
    Karel Pravda-Starov
    Mathematische Annalen, 2009, 344 : 801 - 846
  • [39] On the Aα--spectra of graphs and the relation between Aα- and Aα--spectra
    Fakieh, Wafaa
    Alkhamisi, Zakeiah
    Alashwali, Hanaa
    AIMS MATHEMATICS, 2024, 9 (02): : 4587 - 4603
  • [40] EIGENVALUES BELOW THE ESSENTIAL SPECTRA OF SINGULAR ELLIPTIC-OPERATORS
    EVANS, WD
    LEWIS, RT
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) : 197 - 222