A relation between the positive and negative spectra of elliptic operators

被引:0
|
作者
Rowan Killip
Stanislav Molchanov
Oleg Safronov
机构
[1] University of California,Department of Mathematics
[2] University of North Carolina at Charlotte,Department of Mathematics and Statistics
[3] National Research University “Higher School of Economics”,undefined
来源
关键词
Discrete spectrum; Continuous spectrum; Singular sequences; Schrödinger operators; Primary 47F05; 35J30; Secondary 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectral properties of pairs of operators -Δ±V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta \pm V$$\end{document} and show that if their negative spectra are discrete, then their essential spectra fill the positive semi-axis. Analogous statements are proved for more general operators of the form m(i∇)±V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(i\nabla )\pm V$$\end{document} as well as for operators on the lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document}.
引用
收藏
页码:1799 / 1807
页数:8
相关论文
共 50 条