The best nanoparticle size distribution for minimum thermal conductivity

被引:0
|
作者
Hang Zhang
Austin J. Minnich
机构
[1] Division of Engineering and Applied Science California Institute of Technology Pasadena,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Which sizes of nanoparticles embedded in a crystalline solid yield the lowest thermal conductivity? Nanoparticles have long been demonstrated to reduce the thermal conductivity of crystals by scattering phonons, but most previous works assumed the nanoparticles to have a single size. Here, we use optimization methods to show that the best nanoparticle size distribution to scatter the broad thermal phonon spectrum is not a similarly broad distribution but rather several discrete peaks at well-chosen nanoparticle radii. For SiGe, the best size distribution yields a thermal conductivity below that of amorphous silicon. Further, we demonstrate that a simplified distribution yields nearly the same low thermal conductivity and can be readily fabricated. Our work provides important insights into how to manipulate the full spectrum of phonons and will guide the design of more efficient thermoelectric materials.
引用
收藏
相关论文
共 50 条
  • [31] The Influence of Anisotropy and Nanoparticle Size Distribution on the Lattice Thermal Conductivity and the Thermoelectric Figure of Merit of Nanostructured (Bi,Sb)2Te3
    Bulat, L. P.
    Drabkin, I. A.
    Karatayev, V. V.
    Osvenskii, V. B.
    Parkhomenko, Yu. N.
    Pshenay-Severin, D. A.
    Sorokin, A. I.
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (06) : 2121 - 2126
  • [32] The Influence of Anisotropy and Nanoparticle Size Distribution on the Lattice Thermal Conductivity and the Thermoelectric Figure of Merit of Nanostructured (Bi,Sb)2Te3
    L. P. Bulat
    I. A. Drabkin
    V. V. Karatayev
    V. B. Osvenskii
    Yu. N. Parkhomenko
    D. A. Pshenay-Severin
    A. I. Sorokin
    Journal of Electronic Materials, 2014, 43 : 2121 - 2126
  • [33] A model for the lattice thermal conductivity of nanocrystalline materials with arbitrary grain size distribution
    Hong, Hao-Jhan
    Huang, Mei-Jiau
    APPLIED THERMAL ENGINEERING, 2024, 255
  • [34] Thermal Conductivity Minimum: A New Water Anomaly
    Kumar, Pradeep
    Stanley, H. Eugene
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (48): : 14269 - 14273
  • [35] A unified understanding of minimum lattice thermal conductivity
    Xia, Yi
    Gaines II, Dale
    He, Jiangang
    Pal, Koushik
    Li, Zhi
    Kanatzidis, Mercouri G.
    Ozolins, Vidvuds
    Wolverton, Chris
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (26)
  • [36] Ordering up the minimum thermal conductivity of solids
    Goodson, K. E.
    SCIENCE, 2007, 315 (5810) : 342 - 343
  • [37] A Best Lag Size of Minimum Variance FIR Smoothers
    Kwon, Bo Kyu
    Choi, Ji-Woong
    Park, Jung Hun
    Han, Soohee
    Kwon, Wook Hyun
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (04) : 307 - 310
  • [38] Thermal conductivity of nanoparticle-fluid mixture
    Wang, XW
    Xu, XF
    Choi, SUS
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1999, 13 (04) : 474 - 480
  • [39] Ultralow thermal conductivity of nanoparticle packed bed
    Hu, X. Jack
    Prasher, Ravi
    Lofgreen, Kelly
    APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [40] Thermal conductivity of high contrast nanoparticle composites
    Tian, Weixue
    Yang, Ronggul
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 1, 2007, : 1 - 6