The best nanoparticle size distribution for minimum thermal conductivity

被引:0
|
作者
Hang Zhang
Austin J. Minnich
机构
[1] Division of Engineering and Applied Science California Institute of Technology Pasadena,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Which sizes of nanoparticles embedded in a crystalline solid yield the lowest thermal conductivity? Nanoparticles have long been demonstrated to reduce the thermal conductivity of crystals by scattering phonons, but most previous works assumed the nanoparticles to have a single size. Here, we use optimization methods to show that the best nanoparticle size distribution to scatter the broad thermal phonon spectrum is not a similarly broad distribution but rather several discrete peaks at well-chosen nanoparticle radii. For SiGe, the best size distribution yields a thermal conductivity below that of amorphous silicon. Further, we demonstrate that a simplified distribution yields nearly the same low thermal conductivity and can be readily fabricated. Our work provides important insights into how to manipulate the full spectrum of phonons and will guide the design of more efficient thermoelectric materials.
引用
收藏
相关论文
共 50 条
  • [21] Prediction of particle size distribution effects on thermal conductivity of particulate composites
    Holotescu, S.
    Stoian, F. D.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2011, 42 (05) : 379 - 385
  • [22] Evaluating the effect of grain size distribution on thermal conductivity of thermoelectric materials
    Das, Priyabrata
    Bathula, Sivaiah
    Gollapudi, Srikant
    NANO EXPRESS, 2020, 1 (02):
  • [23] THERMAL-CONDUCTIVITY MINIMUM OF ALUMINUM
    MUCHA, J
    RAFALOWICZ, J
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1978, 48 (01): : 221 - 224
  • [24] Thermal conductivity of planetary regoliths: The effects of grain-size distribution
    Mellon, Michael T.
    McKay, Christopher P.
    Grant, John A.
    ICARUS, 2022, 387
  • [25] A thermal conductivity model of nanofluids based on particle size distribution analysis
    Zhou, Dengqing
    Wu, Huiying
    APPLIED PHYSICS LETTERS, 2014, 105 (08)
  • [26] On the Thermal Conductivity of Gold Nanoparticle Colloids
    Shalkevich, Natallia
    Escher, Werner
    Buergi, Thomas
    Michel, Bruno
    Si-Ahmed, Lynda
    Poulikakos, Dimos
    LANGMUIR, 2010, 26 (02) : 663 - 670
  • [27] Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations
    Yongjin Feng
    Boming Yu
    Kaiming Feng
    Peng Xu
    Mingqing Zou
    Journal of Nanoparticle Research, 2008, 10 : 1319 - 1328
  • [28] Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations
    Feng, Yongjin
    Yu, Boming
    Feng, Kaiming
    Xu, Peng
    Zou, Mingqing
    JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (08) : 1319 - 1328
  • [29] Thermal conductivity of nanoparticle suspensions (nanofluids)
    Murshed, S. M. S.
    Leong, K. C.
    Yang, C.
    2006 IEEE CONFERENCE ON EMERGING TECHNOLOGIES - NANOELECTRONICS, 2006, : 155 - +
  • [30] Equilibrium molecular dynamics simulation study on the effect of nanoparticle loading and size on thermal conductivity of nanofluids
    Selvam, R. Panneer
    Sarkar, Suranjan
    PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 2, 2007, : 293 - 301