The best nanoparticle size distribution for minimum thermal conductivity

被引:0
|
作者
Hang Zhang
Austin J. Minnich
机构
[1] Division of Engineering and Applied Science California Institute of Technology Pasadena,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Which sizes of nanoparticles embedded in a crystalline solid yield the lowest thermal conductivity? Nanoparticles have long been demonstrated to reduce the thermal conductivity of crystals by scattering phonons, but most previous works assumed the nanoparticles to have a single size. Here, we use optimization methods to show that the best nanoparticle size distribution to scatter the broad thermal phonon spectrum is not a similarly broad distribution but rather several discrete peaks at well-chosen nanoparticle radii. For SiGe, the best size distribution yields a thermal conductivity below that of amorphous silicon. Further, we demonstrate that a simplified distribution yields nearly the same low thermal conductivity and can be readily fabricated. Our work provides important insights into how to manipulate the full spectrum of phonons and will guide the design of more efficient thermoelectric materials.
引用
收藏
相关论文
共 50 条
  • [1] The best nanoparticle size distribution for minimum thermal conductivity
    Zhang, Hang
    Minnich, Austin J.
    SCIENTIFIC REPORTS, 2015, 5
  • [2] Influence of nanoparticle size distribution on the thermal conductivity of particulate nanocomposites
    Huang, Cong-Liang
    Qian, Xin
    Yang, Rong-Gui
    EPL, 2017, 117 (02)
  • [3] Lattice thermal conductivity of embedded nanoparticle composites: the role of particle size distribution
    Maranets, Theodore
    Cui, Haoran
    Wang, Yan
    NANOTECHNOLOGY, 2024, 35 (05)
  • [4] Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution
    Sun, Xiaobo
    Ramesh, Palanisamy
    Itkis, Mikhail E.
    Bekyarova, Elena
    Haddon, Robert C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (33)
  • [5] Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids?
    Lee, Ji-Hwan
    Lee, Seung-Hyun
    Jang, Seok Pil
    APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [6] Influence of the particle size distribution on the thermal conductivity of nanofluids
    Hadjov, K. B.
    Dontchev, D. P.
    JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (07) : 1713 - 1718
  • [7] Influence of the particle size distribution on the thermal conductivity of nanofluids
    K. B. Hadjov
    D. P. Dontchev
    Journal of Nanoparticle Research, 2009, 11 : 1713 - 1718
  • [8] Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids
    Kondaraju, Sasidhar
    Jin, E. K.
    Lee, J. S.
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (01) : 133 - 144
  • [9] Effect of the multi-sized nanoparticle distribution on the thermal conductivity of nanofluids
    Sasidhar Kondaraju
    E. K. Jin
    J. S. Lee
    Microfluidics and Nanofluidics, 2011, 10 : 133 - 144
  • [10] Minimum thermal conductivity of superlattices
    Simkin, MV
    Mahan, GD
    PHYSICAL REVIEW LETTERS, 2000, 84 (05) : 927 - 930