In this paper, it is characterized the generating curves of minimal rotational surfaces in the de Sitter space S13\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {S}}_1^3$$\end{document} as solutions of a variational problem. More exactly, it is proved that these curves are the critical points of a potential energy functional involving the distance to a given plane among all curves of S12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {S}}_1^2$$\end{document} with prescribed endpoints and fixed length. This extends the known Euler’s result that asserts that the catenary is the generating curve of the catenoid.