Fuzzy de Sitter space

被引:0
|
作者
Maja Burić
Duško Latas
Luka Nenadović
机构
[1] University of Belgrade,Faculty of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We discuss properties of fuzzy de Sitter space defined by means of algebra of the de Sitter group SO(1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {SO}(1,4)$$\end{document} in unitary irreducible representations. It was shown before that this fuzzy space has local frames with metrics that reduce, in the commutative limit, to the de Sitter metric. Here we determine spectra of the embedding coordinates for (ρ,s=12)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho ,s=\frac{1}{2})$$\end{document} unitary irreducible representations of the principal continuous series of the SO(1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {SO}(1,4)$$\end{document}. The result is obtained in the Hilbert space representation, but using representation theory it can be generalized to all representations of the principal continuous series.
引用
收藏
相关论文
共 50 条
  • [1] Fuzzy de Sitter space
    Buric, Maja
    Latas, Dusko
    Nenadovic, Luka
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (11):
  • [2] Discreteness of Fuzzy de Sitter Space
    M. Burić
    D. Latas
    [J]. Physics of Particles and Nuclei, 2018, 49 : 918 - 920
  • [3] Discreteness of Fuzzy de Sitter Space
    Buric, M.
    Latas, D.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (05) : 918 - 920
  • [4] Laplacian on fuzzy de Sitter space
    Brkic, Bojana
    Buric, Maja
    Latas, Dusko
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (11)
  • [5] Fuzzy Euclidean wormholes in de Sitter space
    Chen, Pisin
    Hu, Yao-Chieh
    Yeom, Dong-han
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (07):
  • [6] Fuzzy Euclidean wormholes in anti-de Sitter space
    Kang, Subeom
    Yeom, Dong-Han
    [J]. PHYSICAL REVIEW D, 2018, 97 (12)
  • [7] De Sitter space
    Spradlin, N
    Strominger, A
    Volovich, A
    [J]. UNITY FROM DUALITY: GRAVITY, GAUGE THEORY AND STRINGS, 2002, 76 : 423 - 453
  • [8] Fuzzy de Sitter Space from kappa-Minkowski Space in Matrix Basis
    Jurman, Danijel
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (04):
  • [9] New coordinates for de Sitter space and de Sitter radiation
    Parikh, MK
    [J]. PHYSICS LETTERS B, 2002, 546 (3-4) : 189 - 195
  • [10] de Sitter Space as a Resonance
    Maltz, Jonathan
    Susskind, Leonard
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (10)