One-dimensional two-component Bose gas and the algebraic Bethe ansatz

被引:0
|
作者
N. A. Slavnov
机构
[1] Steklov Mathematical Institute of the RAS,
来源
关键词
Bethe ansatz; monodromy matrix; Bethe vector;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the nested algebraic Bethe ansatz to a model of a one-dimensional two-component Bose gas with a δ-function repulsive interaction. Using a lattice approximation of the L-operator, we find the Bethe vectors of the model in the continuum limit. We also obtain a series representation for the monodromy matrix of the model in terms of Bose fields. This representation allows studying an asymptotic expansion of the monodromy matrix over the spectral parameter.
引用
收藏
页码:800 / 821
页数:21
相关论文
共 50 条
  • [31] The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates
    Lue Bin-Bin
    Hao Xue
    Tian Qiang
    CHINESE PHYSICS B, 2011, 20 (02)
  • [32] Localization of a two-component Bose-Einstein condensate in a one-dimensional random potential
    Xi, Kui-Tian
    Li, Jinbin
    Shi, Da-Ning
    PHYSICA B-CONDENSED MATTER, 2015, 459 : 6 - 11
  • [33] Algebraic Bethe ansatz for integrable one-dimensional extended Hubbard models with open boundary conditions
    Ge, XY
    Gould, MD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1801 - 1825
  • [34] Bethe-ansatz analysis of near-resonant two-component systems in one dimension
    Ren, Tianhao
    Aleiner, Igor
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [35] Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction
    Maruyama, Isao
    Katsuray, Hosho
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [36] Dynamical instabilities in a two-component Bose-Einstein condensate in a one-dimensional optical lattice
    Hooley, Samantha
    Benedict, Keith A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [37] Density-functional theory of two-component Bose gases in one-dimensional harmonic traps
    Hao, Yajiang
    Chen, Shu
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [38] Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions
    Oelkers, N
    Batchelor, MT
    Bortz, M
    Guan, XW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (05): : 1073 - 1098
  • [39] Two-component delta-function fermions and Bethe ansatz eigenstates
    Murakami, S
    Wadati, M
    CHAOS SOLITONS & FRACTALS, 1996, 7 (01) : 93 - 107
  • [40] DAMPING IN TWO-COMPONENT BOSE GAS
    Bhattacherjee, Aranya B.
    MODERN PHYSICS LETTERS B, 2014, 28 (04):