Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction

被引:15
|
作者
Maruyama, Isao [1 ]
Katsuray, Hosho [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
algebraic Bethe ansatz; matrix product ansatz; continuous matrix product state; CORNER TRANSFER-MATRICES; TONKS-GIRARDEAU GAS; 8-VERTEX MODEL; QUANTUM-SYSTEMS; SPIN SYSTEMS; LATTICE; RENORMALIZATION; CHAIN; THERMODYNAMICS; STATE;
D O I
10.1143/JPSJ.79.073002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a matrix product representation of the Bethe ansatz state for the Lieb-Linger model describing the one-dimensional Bose gas with delta-function interaction. We first construct eigenstates of the discretized model in the form of matrix product states using the algebraic Bethe ansatz. Continuous matrix product states are then exactly obtained in the continuum limit with a finite number of particles. The factorizing F-matrices in the lattice model are indispensable for the continuous matrix product states and lead to a marked reduction from the original bosonic system with infinite degrees of freedom to the five-vertex model.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] THEORY OF ONE-DIMENSIONAL BOSE-GAS WITH POINT INTERACTION
    POPOV, VN
    THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 30 (03) : 222 - 226
  • [2] Interaction quenches in the one-dimensional Bose gas
    Kormos, Marton
    Shashi, Aditya
    Chou, Yang-Zhi
    Caux, Jean-Sebastien
    Imambekov, Adilet
    PHYSICAL REVIEW B, 2013, 88 (20):
  • [3] Bethe ansatz cluster expansion method for a one-dimensional δ-function Bose gas
    Kato, G
    Wadati, M
    CHAOS SOLITONS & FRACTALS, 2003, 15 (05) : 849 - 858
  • [4] ONE-DIMENSIONAL TWO-COMPONENT BOSE GAS AND THE ALGEBRAIC BETHE ANSATZ
    Slavnov, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 183 (03) : 800 - 821
  • [5] One-dimensional two-component Bose gas and the algebraic Bethe ansatz
    N. A. Slavnov
    Theoretical and Mathematical Physics, 2015, 183 : 800 - 821
  • [6] Universality of the one-dimensional Bose gas with delta interaction
    Amico, L
    Korepin, V
    ANNALS OF PHYSICS, 2004, 314 (02) : 496 - 507
  • [7] Mediated interaction between polarons in a one-dimensional Bose gas
    Petkovic, Aleksandra
    Ristivojevic, Zoran
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [8] CLUSTER COEFFICIENTS FOR ONE-DIMENSIONAL BOSE-GAS WITH POINT INTERACTIONS
    DODD, LR
    GIBBS, AM
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) : 41 - 43
  • [9] A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium correlations of the one-dimensional Bose gas
    Zill, Jan C.
    Wright, Tod M.
    Kheruntsyan, Karen V.
    Gasenzer, Thomas
    Davis, Matthew J.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [10] Cooling of a One-Dimensional Bose Gas
    Rauer, B.
    Grisins, P.
    Mazets, I. E.
    Schweigler, T.
    Rohringer, W.
    Geiger, R.
    Langen, T.
    Schmiedmayer, J.
    PHYSICAL REVIEW LETTERS, 2016, 116 (03)