Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction

被引:15
|
作者
Maruyama, Isao [1 ]
Katsuray, Hosho [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
algebraic Bethe ansatz; matrix product ansatz; continuous matrix product state; CORNER TRANSFER-MATRICES; TONKS-GIRARDEAU GAS; 8-VERTEX MODEL; QUANTUM-SYSTEMS; SPIN SYSTEMS; LATTICE; RENORMALIZATION; CHAIN; THERMODYNAMICS; STATE;
D O I
10.1143/JPSJ.79.073002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a matrix product representation of the Bethe ansatz state for the Lieb-Linger model describing the one-dimensional Bose gas with delta-function interaction. We first construct eigenstates of the discretized model in the form of matrix product states using the algebraic Bethe ansatz. Continuous matrix product states are then exactly obtained in the continuum limit with a finite number of particles. The factorizing F-matrices in the lattice model are indispensable for the continuous matrix product states and lead to a marked reduction from the original bosonic system with infinite degrees of freedom to the five-vertex model.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Correlation functions of the one-dimensional attractive bose gas
    Calabrese, Pasquale
    Caux, Jean-Sebastien
    PHYSICAL REVIEW LETTERS, 2007, 98 (15)
  • [32] THERMODYNAMICS OF A ONE-DIMENSIONAL LATTICE BOSE-GAS
    BOGOLYUBOV, NM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 67 (03) : 614 - 622
  • [33] Statistical properties of one-dimensional attractive Bose gas
    Bienias, P.
    Pawlowski, K.
    Gajda, M.
    Rzazewski, K.
    EPL, 2011, 96 (01)
  • [34] Quantum impurity in a one-dimensional trapped Bose gas
    Dehkharghani, A. S.
    Volosniev, A. G.
    Zinner, N. T.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [35] Interacting one-dimensional Bose gas: Beyond Bogolyubov
    Paul, P
    Sutherland, B
    PHYSICAL REVIEW A, 2000, 62 (05): : 055601 - 055601
  • [36] Ideal Bose gas in steep one-dimensional traps
    Rovenchak, Andrij
    Krynytskyi, Yuri
    Fizika Nizkikh Temperatur, 2022, 48 (01): : 23 - 29
  • [37] CORRELATION LENGTH OF THE ONE-DIMENSIONAL BOSE-GAS
    BOGOLIUBOV, NM
    KOREPIN, VE
    NUCLEAR PHYSICS B, 1985, 257 (06) : 766 - 778
  • [38] Spin waves in a one-dimensional spinor Bose gas
    Fuchs, JN
    Gangardt, DM
    Keilmann, T
    Shlyapnikov, GV
    PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [39] Statistical mechanics of a one-dimensional δ-function Bose gas
    Wadati, M
    Kato, G
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (07) : 1924 - 1930
  • [40] Exponents of Spectral Functions in the One-Dimensional Bose Gas
    Schlottmann, Pedro
    CONDENSED MATTER, 2018, 3 (04): : 1 - 15