Rogue-wave solutions for a discrete Ablowitz–Ladik equation with variable coefficients for an electrical lattice

被引:0
|
作者
Xiao-Yu Wu
Bo Tian
Hui-Min Yin
Zhong Du
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
来源
Nonlinear Dynamics | 2018年 / 93卷
关键词
Rogue waves; Electrical lattice; Discrete variable-coefficient Ablowitz–Ladik equation; Kadomtsev–Petviashvili hierarchy reduction;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate a discrete Ablowitz–Ladik equation with variable coefficients, which models the modulated waves in an electrical lattice. Employing the similarity transformation and Kadomtsev–Petviashvili hierarchy reduction, we obtain the rogue-wave solutions in the Gram determinant form under certain variable-coefficient constraints. We graphically study the rogue waves with the influence of the coefficient of tunnel coupling between the sites, |Λ(t)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varLambda (t)|$$\end{document}, time-modulated effective gain/loss term, γ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (t)$$\end{document}, space–time-modulated inhomogeneous frequency shift, vn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_n(t)$$\end{document} (n=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2,\ldots $$\end{document}), and lattice spacing, h, where t is the scaled time. Increasing value of h leads to the decrease in the rogue waves’ amplitudes. Properties of the rogue waves with |Λ(t)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varLambda (t)|$$\end{document} as the polynomial, sinusoidal, hyperbolic and exponential functions are discussed, respectively. The monotonically increasing, monotonically decreasing, periodic and Gaussian backgrounds are, respectively, displayed with the different γ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (t)$$\end{document}. The first-order rogue wave exhibits one hump and two valleys, and the second-order rogue waves exhibit three humps and one highest peak. The third-order rogue waves with the six humps and one highest peak are also presented.
引用
收藏
页码:1635 / 1645
页数:10
相关论文
共 50 条
  • [21] Discrete rogue waves of the Ablowitz-Ladik and Hirota equations
    Ankiewicz, Adrian
    Akhmediev, Nail
    Soto-Crespo, J. M.
    [J]. PHYSICAL REVIEW E, 2010, 82 (02):
  • [22] Doubly Periodic Wave Solutions and Soliton Solutions of Ablowitz–Ladik Lattice System
    Wenhua Huang
    Yulu Liu
    [J]. International Journal of Theoretical Physics, 2008, 47 : 338 - 349
  • [23] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [24] Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice
    Wu, Xi -Hu
    Gao, Yi-Tian
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 137
  • [25] Doubly periodic wave solutions and soliton solutions of Ablowitz-Ladik lattice system
    Huang, Wenhua
    Liu, Yulu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 338 - 349
  • [26] Rogue wave solutions of the nonlinear Schrödinger equation with variable coefficients
    CHANGFU LIU
    YAN YAN LI
    MEIPING GAO
    ZEPING WANG
    ZHENGDE DAI
    CHUANJIAN WANG
    [J]. Pramana, 2015, 85 : 1063 - 1072
  • [27] Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    [J]. PHYSICAL REVIEW E, 2013, 87 (06):
  • [28] Nonautonomous discrete rogue wave solutions and interactions in an inhomogeneous lattice with varying coefficients
    Yan, Zhenya
    Jiang, Dongmei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 542 - 549
  • [29] Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation
    Yu, Fajun
    [J]. PHYSICAL REVIEW E, 2015, 91 (03):
  • [30] Dark soliton collisions of a discrete Ablowitz-Ladik equation for an electrical/optical system
    Xie, Xi-Yang
    Tian, Bo
    Wu, Xiao-Yu
    Jiang, Yan
    [J]. OPTICAL ENGINEERING, 2016, 55 (10)