Doubly periodic wave solutions and soliton solutions of Ablowitz-Ladik lattice system

被引:7
|
作者
Huang, Wenhua [1 ,2 ]
Liu, Yulu [2 ]
机构
[1] Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Ablowitz-Ladik system; Jacobi elliptic function; soliton;
D O I
10.1007/s10773-007-9455-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The general Jacobi elliptic function expansion method is developed and extended to construct doubly periodic wave solutions for discrete nonlinear equations. Applying this method, many exact elliptic function doubly periodic wave solutions are obtained for Ablowitz-Ladik lattice system. When the modulus m -> 1 or m -> 0, these solutions degenerate into hyperbolic function solutions and trigonometric function solutions respectively. In long wave limit, solitonic solutions including bright soliton and dark soliton solutions are also obtained.
引用
收藏
页码:338 / 349
页数:12
相关论文
共 50 条
  • [1] Doubly Periodic Wave Solutions and Soliton Solutions of Ablowitz–Ladik Lattice System
    Wenhua Huang
    Yulu Liu
    [J]. International Journal of Theoretical Physics, 2008, 47 : 338 - 349
  • [2] Soliton solutions and conservation laws for a generalized Ablowitz-Ladik system
    Song, Jiang-Yan
    Yang, Yong-Kang
    [J]. CHINESE JOURNAL OF PHYSICS, 2019, 60 : 271 - 278
  • [3] Thresholds for soliton creation in the Ablowitz-Ladik lattice
    Adrian Espinola-Rocha, J.
    Kevrekidis, P. G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) : 693 - 706
  • [4] Exact localized and periodic solutions of the Ablowitz-Ladik discrete nonlinear Schrodinger system
    Lai, XJ
    Zhang, JF
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (8-9): : 573 - 582
  • [5] Stability analysis of plane wave solutions of the generalized Ablowitz-Ladik system
    Mohamadou, Alidou
    Tiofack, C. G. Lantchio
    Kofane, Timoleon Crepin
    [J]. PHYSICA SCRIPTA, 2006, 74 (06) : 718 - 725
  • [6] ON THE SPATIAL ASYMPTOTICS OF SOLUTIONS OF THE ABLOWITZ-LADIK HIERARCHY
    Michor, Johanna
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4249 - 4258
  • [7] Finite genus solutions to the Ablowitz-Ladik equations
    Miller, PD
    Ercolani, NM
    Krichever, IM
    Levermore, CD
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (12) : 1369 - 1440
  • [8] Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation
    Yu, Fajun
    [J]. PHYSICAL REVIEW E, 2015, 91 (03):
  • [9] Rogue-wave solutions for a discrete Ablowitz-Ladik equation with variable coefficients for an electrical lattice
    Wu, Xiao-Yu
    Tian, Bo
    Yin, Hui-Min
    Du, Zhong
    [J]. NONLINEAR DYNAMICS, 2018, 93 (03) : 1635 - 1645
  • [10] Dynamics of the Ablowitz-Ladik soliton train
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 7