Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition

被引:0
|
作者
Peter J. Forrester
Dang-Zheng Liu
机构
[1] The University of Melbourne,Department of Mathematics and Statistics
[2] The University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers
[3] University of Science and Technology of China,Key Laboratory of Wu Wen
来源
关键词
Random Matrice; Random Matrix; Random Matrix Theory; Eigenvalue Density; Global Density;
D O I
暂无
中图分类号
学科分类号
摘要
The singular values squared of the random matrix product Y=GrGr-1…G1(G0+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y = {G_{r} G_{r-1}} \ldots G_{1} (G_{0} + A)}$$\end{document}, where each Gj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{j}}$$\end{document} is a rectangular standard complex Gaussian matrix while A is non-random, are shown to be a determinantal point process with the correlation kernel given by a double contour integral. When all but finitely many eigenvalues of A*A are equal to bN, the kernel is shown to admit a well-defined hard edge scaling, in which case a critical value is established and a phase transition phenomenon is observed. More specifically, the limiting kernel in the subcritical regime of 0<b<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < b < 1}$$\end{document} is independent of b, and is in fact the same as that known for the case b =  0 due to Kuijlaars and Zhang. The critical regime of b =  1 allows for a double scaling limit by choosing b=(1-τ/N)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{b = (1 - \tau/\sqrt{N})^{-1}}}$$\end{document}, and for this the critical kernel and outlier phenomenon are established. In the simplest case r =  0, which is closely related to non-intersecting squared Bessel paths, a distribution corresponding to the finite shifted mean LUE is proven to be the scaling limit in the supercritical regime of b>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b > 1}$$\end{document} with two distinct scaling rates. Similar results also hold true for the random matrix product TrTr-1…T1(G0+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{r} T_{r-1} \ldots T_{1} (G_{0} + A)}$$\end{document}, with each Tj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{j}}$$\end{document} being a truncated unitary matrix.
引用
收藏
页码:333 / 368
页数:35
相关论文
共 50 条
  • [31] EIGENVALUES AND SINGULAR VALUES OF PRODUCTS OF RECTANGULAR GAUSSIAN RANDOM MATRICES - THE EXTENDED VERSION
    Burda, Zdzislaw
    Nowak, Maciej A.
    Jarosz, Andrzej
    Livan, Giacomo
    Swiech, Artur
    ACTA PHYSICA POLONICA B, 2011, 42 (05): : 939 - 985
  • [32] The tracy-widom limit for the largest eigenvalues of singular complex wishart matrices
    Onatski, Alexei
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (02): : 470 - 490
  • [33] On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values
    Wei, Yi
    Fyodorov, Yan V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (50)
  • [34] Complex symmetric, self-dual, and Ginibre random matrices: analytical results for three classes of bulk and edge statistics
    Akemann, Gernot
    Ayguen, Noah
    Kieburg, Mario
    Paessler, Patricia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (12)
  • [35] A note on the limiting mean distribution of singular values for products of two Wishart random matrices
    Zhang, Lun
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [36] Large complex correlated Wishart matrices: the Pearcey kernel and expansion at the hard edge
    Hachem, Walid
    Hardy, Adrien
    Najim, Jamal
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [37] Phase transition on Exel crossed products associated to dilation matrices
    Laca, Marcelo
    Raeburn, Iain
    Ramagge, Jacqui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3633 - 3664
  • [38] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Dang-Zheng Liu
    Dong Wang
    Yanhui Wang
    Communications in Mathematical Physics, 2023, 399 : 1811 - 1855
  • [39] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Liu, Dang-Zheng
    Wang, Dong
    Wang, Yanhui
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 1811 - 1855
  • [40] Exotic local limit theorems at the phase transition in free products
    Dussaule, Matthieu
    Peigne, Marc
    Tapie, Samuel
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 22