Singular Values for Products of Complex Ginibre Matrices with a Source: Hard Edge Limit and Phase Transition

被引:0
|
作者
Peter J. Forrester
Dang-Zheng Liu
机构
[1] The University of Melbourne,Department of Mathematics and Statistics
[2] The University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers
[3] University of Science and Technology of China,Key Laboratory of Wu Wen
来源
关键词
Random Matrice; Random Matrix; Random Matrix Theory; Eigenvalue Density; Global Density;
D O I
暂无
中图分类号
学科分类号
摘要
The singular values squared of the random matrix product Y=GrGr-1…G1(G0+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y = {G_{r} G_{r-1}} \ldots G_{1} (G_{0} + A)}$$\end{document}, where each Gj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G_{j}}$$\end{document} is a rectangular standard complex Gaussian matrix while A is non-random, are shown to be a determinantal point process with the correlation kernel given by a double contour integral. When all but finitely many eigenvalues of A*A are equal to bN, the kernel is shown to admit a well-defined hard edge scaling, in which case a critical value is established and a phase transition phenomenon is observed. More specifically, the limiting kernel in the subcritical regime of 0<b<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < b < 1}$$\end{document} is independent of b, and is in fact the same as that known for the case b =  0 due to Kuijlaars and Zhang. The critical regime of b =  1 allows for a double scaling limit by choosing b=(1-τ/N)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{b = (1 - \tau/\sqrt{N})^{-1}}}$$\end{document}, and for this the critical kernel and outlier phenomenon are established. In the simplest case r =  0, which is closely related to non-intersecting squared Bessel paths, a distribution corresponding to the finite shifted mean LUE is proven to be the scaling limit in the supercritical regime of b>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b > 1}$$\end{document} with two distinct scaling rates. Similar results also hold true for the random matrix product TrTr-1…T1(G0+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{r} T_{r-1} \ldots T_{1} (G_{0} + A)}$$\end{document}, with each Tj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{j}}$$\end{document} being a truncated unitary matrix.
引用
收藏
页码:333 / 368
页数:35
相关论文
共 50 条