On the Asymptotic Stability for Nonlinear Oscillators with Time-Dependent Damping

被引:0
|
作者
L. Hatvani
机构
[1] University of Szeged,Bolyai Institute
关键词
Asymptotic stability; Total mechanical energy; Dissipation; Differential inequalities; Primary 34D20; Secondary 70K20;
D O I
暂无
中图分类号
学科分类号
摘要
The equation x′′+h(t,x,x′)x′+f(x)=0(x∈R,xf(x)≥0,t∈[0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x''+h(t,x,x')x'+f(x)=0 \qquad (x\in \mathbb {R},\ xf(x)\ge 0,\ t\in [0,\infty )) \end{aligned}$$\end{document}is considered, where the damping coefficient h allows an estimate a(t)|x′|αw(x,x′)≤h(t,x,x′)≤b(t)W(x,x′).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(t)|x'|^\alpha w(x,x')\le h(t,x,x')\le b(t) W(x,x'). \end{aligned}$$\end{document}Sufficient conditions on the lower and upper control functions a, b are given guaranteeing that along every motion the total mechanical energy tends to zero as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. The key condition in the main theorem is of the form ∫0∞a(t)ψ(t;a,b)dt=∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^\infty a(t)\psi (t;a,b)\,{\mathrm{d}}t=\infty , \end{aligned}$$\end{document}which is required for every member ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} of a properly defined family of test functions. In the second part of the paper corollaries are deduced from this general result formulated by explicit analytic conditions on a, b containing certain integral means. Some of the corollaries improve earlier theorems even for the linear case.
引用
收藏
页码:441 / 459
页数:18
相关论文
共 50 条
  • [31] Global existence and asymptotic behavior of solutions to the Euler equations with time-dependent damping
    Pan, Xinghong
    APPLICABLE ANALYSIS, 2021, 100 (16) : 3546 - 3575
  • [32] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE EULER-KORTEWEG EQUATIONS WITH TIME-DEPENDENT DAMPING
    Xu, Rui
    LI, Yeping
    Wu, Qiwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 3507 - 3536
  • [33] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO EULER EQUATIONS WITH TIME-DEPENDENT DAMPING IN CRITICAL CASE
    Geng, Shifeng
    Lin, Yanping
    Mei, Ming
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1463 - 1488
  • [34] Local energy decay for the wave equation with a nonlinear time-dependent damping
    Bchatnia, Ahmed
    Daoulatli, Moez
    APPLICABLE ANALYSIS, 2013, 92 (11) : 2288 - 2308
  • [35] TIME-DEPENDENT ATTRACTOR OF THE PLATE EQUATION WITH NONLINEAR DAMPING AND LINEAR MEMORY
    Liu, Tingting
    Ma, Qiaozhen
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1435 - 1450
  • [36] Time-dependent attractor of wave equations with nonlinear damping and linear memory
    Ma, Qiaozhen
    Wang, Jing
    Liu, Tingting
    OPEN MATHEMATICS, 2019, 17 : 89 - 103
  • [37] Damping Feedback Stabilization for Time-Dependent Nonlinear Control Affine Systems
    Hudon, N.
    Guay, M.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 5561 - 5566
  • [38] Time-dependent coupled harmonic oscillators
    Macedo, D. X.
    Guedes, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
  • [39] ISOTROPIC TIME-DEPENDENT COUPLED OSCILLATORS
    ABDALLA, MS
    PHYSICAL REVIEW A, 1987, 35 (10): : 4160 - 4166
  • [40] Time-dependent damped harmonic oscillators
    Aguiar, V.
    Guedes, I.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2013, 35 (04):