On the Asymptotic Stability for Nonlinear Oscillators with Time-Dependent Damping

被引:0
|
作者
L. Hatvani
机构
[1] University of Szeged,Bolyai Institute
关键词
Asymptotic stability; Total mechanical energy; Dissipation; Differential inequalities; Primary 34D20; Secondary 70K20;
D O I
暂无
中图分类号
学科分类号
摘要
The equation x′′+h(t,x,x′)x′+f(x)=0(x∈R,xf(x)≥0,t∈[0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x''+h(t,x,x')x'+f(x)=0 \qquad (x\in \mathbb {R},\ xf(x)\ge 0,\ t\in [0,\infty )) \end{aligned}$$\end{document}is considered, where the damping coefficient h allows an estimate a(t)|x′|αw(x,x′)≤h(t,x,x′)≤b(t)W(x,x′).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(t)|x'|^\alpha w(x,x')\le h(t,x,x')\le b(t) W(x,x'). \end{aligned}$$\end{document}Sufficient conditions on the lower and upper control functions a, b are given guaranteeing that along every motion the total mechanical energy tends to zero as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. The key condition in the main theorem is of the form ∫0∞a(t)ψ(t;a,b)dt=∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^\infty a(t)\psi (t;a,b)\,{\mathrm{d}}t=\infty , \end{aligned}$$\end{document}which is required for every member ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} of a properly defined family of test functions. In the second part of the paper corollaries are deduced from this general result formulated by explicit analytic conditions on a, b containing certain integral means. Some of the corollaries improve earlier theorems even for the linear case.
引用
收藏
页码:441 / 459
页数:18
相关论文
共 50 条
  • [21] The best asymptotic profile of solutions to Euler equations with time-dependent damping
    Cui, Haibo
    Hou, Xiaofeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1209 - 1223
  • [22] Uniform global asymptotic stability for oscillators with superlinear damping
    Sugie, Jitsuro
    Kira, Kazuya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) : 827 - 853
  • [23] Asymptotic stability of multi-soliton solutions for nonlinear Schrodinger equations with time-dependent potential
    Deng, Qingquan
    Yao, Xiaohua
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (04)
  • [24] Dynamics of a ring of three unidirectionally coupled Duffing oscillators with time-dependent damping
    Barba-Franco, J. J.
    Gallegos, A.
    Jaimes-Reategui, R.
    Gerasimova, S. A.
    Pisarchik, A. N.
    EPL, 2021, 134 (03)
  • [25] Dynamics for a plate equation with nonlinear damping on time-dependent space
    Zhang, Penghui
    Yang, Lu
    ASYMPTOTIC ANALYSIS, 2022, 127 (04) : 381 - 397
  • [26] ATTRACTORS FOR WAVE EQUATIONS WITH NONLINEAR DAMPING ON TIME-DEPENDENT SPACE
    Meng, Fengjuan
    Yang, Meihua
    Zhong, Chengkui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 205 - 225
  • [27] TIME-DEPENDENT HARMONIC OSCILLATORS
    LANDOVITZ, LF
    LEVINE, AM
    SCHREIBER, WM
    PHYSICAL REVIEW A, 1979, 20 (03): : 1162 - 1168
  • [30] ASYMPTOTIC STABILITY FOR INTERMITTENTLY CONTROLLED NONLINEAR OSCILLATORS
    PUCCI, P
    SERRIN, J
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (03) : 815 - 835