The equation x′′+h(t,x,x′)x′+f(x)=0(x∈R,xf(x)≥0,t∈[0,∞))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} x''+h(t,x,x')x'+f(x)=0 \qquad (x\in \mathbb {R},\ xf(x)\ge 0,\ t\in [0,\infty )) \end{aligned}$$\end{document}is considered, where the damping coefficient h allows an estimate a(t)|x′|αw(x,x′)≤h(t,x,x′)≤b(t)W(x,x′).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} a(t)|x'|^\alpha w(x,x')\le h(t,x,x')\le b(t) W(x,x'). \end{aligned}$$\end{document}Sufficient conditions on the lower and upper control functions a, b are given guaranteeing that along every motion the total mechanical energy tends to zero as t→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t\rightarrow \infty $$\end{document}. The key condition in the main theorem is of the form ∫0∞a(t)ψ(t;a,b)dt=∞,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \int _0^\infty a(t)\psi (t;a,b)\,{\mathrm{d}}t=\infty , \end{aligned}$$\end{document}which is required for every member ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi $$\end{document} of a properly defined family of test functions. In the second part of the paper corollaries are deduced from this general result formulated by explicit analytic conditions on a, b containing certain integral means. Some of the corollaries improve earlier theorems even for the linear case.