Non-trivial r-wise intersecting families

被引:0
|
作者
P. Frankl
J. Wang
机构
[1] Alfréd Rényi Institute of Mathematics,Department of Mathematics
[2] Taiyuan University of Technology,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
-wise intersecting families; -wise union families; non-trivial; Kruskal–Katona theorem; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
A k-uniform family F⊂[n]k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F} \subset \binom{[n]}{k}$$\end{document}is called non-trivial r-wise intersecting if F1∩F2∩⋯∩Fr≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1{\cap} F_{2} {\cap}{\cdots}{\cap} F_{r} \neq \emptyset$$\end{document} for every F1,F2,…,Fr∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}, F_{2},{\ldots},F_{r} {\in} \mathcal{F}$$\end{document} and ∩F=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap \mathcal{F} = \emptyset$$\end{document}. O’Neill and Verstraëte determined the maximum size of a non-trivial r-wise intersecting family for n sufficiently large. Actually, the Hilton–Milner–Frankl Theorem implies O’Neill–Verstraëte's result for n≥r(k-r+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq r(k-r + 2)$$\end{document}. In the present paper, we show that the same result holds for a certain range when n is close to 2k.
引用
收藏
页码:510 / 523
页数:13
相关论文
共 50 条
  • [41] ON NON-TRIVIAL SPECTRA OF TRIVIAL GAUGE THEORIES
    Korcyl, Piotr
    Koren, Mateusz
    Wosiek, Jacek
    ACTA PHYSICA POLONICA B, 2013, 44 (04): : 713 - 720
  • [42] ENTANGLEMENT AND NON-TRIVIAL TOPOLOGIES
    Prudencio, Thiago
    Cirilo-Lombardo, Diego Julio
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (09)
  • [43] The Non-Trivial Accomplishments of Counterterrorists
    Jordan, Jenna
    SECURITY STUDIES, 2024,
  • [44] Fermions on non-trivial topologies
    Gamboa, J
    PHYSICS LETTERS B, 2000, 477 (04) : 469 - 473
  • [45] NON-TRIVIAL LAWS FOR HOMOTOPY
    TAYLOR, W
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A5 - A6
  • [46] THE MAXIMUM SIZE OF A NON-TRIVIAL INTERSECTING UNIFORM FAMILY THAT IS NOT A SUBFAMILY OF THE HILTON-MILNER FAMILY
    Han, Jie
    Kohayakawa, Yoshiharu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 73 - 87
  • [47] NON-TRIVIAL REVERSAL OF THE TORUS
    PETIT, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (14): : 927 - 930
  • [48] The non-trivial functions of sleep
    Rattenborg, Niels C.
    Lesku, John A.
    Martinez-Gonzalez, Dolores
    Lima, Steven L.
    SLEEP MEDICINE REVIEWS, 2007, 11 (05) : 405 - 409
  • [49] Non-trivial pursuit of physiology
    Zakaryan, V
    Bliss, R
    Sarvazyan, N
    ADVANCES IN PHYSIOLOGY EDUCATION, 2005, 29 (01) : 11 - 14
  • [50] NON-TRIVIAL MEDIA FACADES
    Herr, Christiane M.
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED ARCHITECTURAL DESIGN RESEARCH IN ASIA (CAADRIA 2012): BEYOND CODES AND PIXELS, 2012, : 99 - 108