Non-trivial r-wise intersecting families

被引:0
|
作者
P. Frankl
J. Wang
机构
[1] Alfréd Rényi Institute of Mathematics,Department of Mathematics
[2] Taiyuan University of Technology,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
-wise intersecting families; -wise union families; non-trivial; Kruskal–Katona theorem; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
A k-uniform family F⊂[n]k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F} \subset \binom{[n]}{k}$$\end{document}is called non-trivial r-wise intersecting if F1∩F2∩⋯∩Fr≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1{\cap} F_{2} {\cap}{\cdots}{\cap} F_{r} \neq \emptyset$$\end{document} for every F1,F2,…,Fr∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}, F_{2},{\ldots},F_{r} {\in} \mathcal{F}$$\end{document} and ∩F=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap \mathcal{F} = \emptyset$$\end{document}. O’Neill and Verstraëte determined the maximum size of a non-trivial r-wise intersecting family for n sufficiently large. Actually, the Hilton–Milner–Frankl Theorem implies O’Neill–Verstraëte's result for n≥r(k-r+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq r(k-r + 2)$$\end{document}. In the present paper, we show that the same result holds for a certain range when n is close to 2k.
引用
收藏
页码:510 / 523
页数:13
相关论文
共 50 条
  • [31] A non-trivial junction
    Benjamin Heinrich
    Nature Nanotechnology, 2018, 13 : 874 - 874
  • [32] Tending to the Non-Trivial
    Kordes, Urban
    PRIMERJALNA KNJIZEVNOST, 2012, 35 (02): : 179 - 191
  • [33] NON-TRIVIAL PURSUITS
    CANBY, ET
    AUDIO, 1985, 69 (03): : 20 - &
  • [34] Intersecting families of sets are typically trivial
    Balogh, Jozsef
    Garcia, Ramon I.
    Li, Lina
    Wagner, Adam Zsolt
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 164 : 44 - 67
  • [35] Identifying families of multipartite states with non-trivial local entanglement transformations
    Li, Nicky Kai Hong
    Spee, Cornelia
    Hebenstreit, Martin
    Vicente, Julio I. de
    Kraus, Barbara
    QUANTUM, 2024, 8 : 1 - 23
  • [36] Families of Mordell Curves with Non-trivial Torsion and Rank of at Least Three
    Jimwel, Renz S.
    Bacani, Jerico B.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 155 - 162
  • [37] Trivial stable structures with non-trivial reducts
    Evans, DM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 351 - 363
  • [38] Trivial and non-trivial machines in the animal and in man
    Ivanovas, G
    KYBERNETES, 2005, 34 (3-4) : 508 - 520
  • [39] Trivial and Non-Trivial (yet Difficult) Physicalism
    Paoletti, Michele Paolini
    PHILOSOPHICAL INQUIRIES, 2015, 3 (01): : 29 - 37