A k-uniform family F⊂[n]k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{F} \subset \binom{[n]}{k}$$\end{document}is called non-trivial r-wise intersecting if F1∩F2∩⋯∩Fr≠∅\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1{\cap} F_{2} {\cap}{\cdots}{\cap} F_{r} \neq \emptyset$$\end{document} for every F1,F2,…,Fr∈F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}, F_{2},{\ldots},F_{r} {\in} \mathcal{F}$$\end{document} and ∩F=∅\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cap \mathcal{F} = \emptyset$$\end{document}. O’Neill and Verstraëte determined the maximum size of a non-trivial r-wise intersecting
family for n sufficiently large. Actually, the Hilton–Milner–Frankl Theorem implies O’Neill–Verstraëte's result for n≥r(k-r+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \geq r(k-r + 2)$$\end{document}. In the present paper, we show that the same result holds for a certain range when n is close to 2k.