Non-trivial r-wise intersecting families

被引:0
|
作者
P. Frankl
J. Wang
机构
[1] Alfréd Rényi Institute of Mathematics,Department of Mathematics
[2] Taiyuan University of Technology,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
-wise intersecting families; -wise union families; non-trivial; Kruskal–Katona theorem; 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
A k-uniform family F⊂[n]k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F} \subset \binom{[n]}{k}$$\end{document}is called non-trivial r-wise intersecting if F1∩F2∩⋯∩Fr≠∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1{\cap} F_{2} {\cap}{\cdots}{\cap} F_{r} \neq \emptyset$$\end{document} for every F1,F2,…,Fr∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{1}, F_{2},{\ldots},F_{r} {\in} \mathcal{F}$$\end{document} and ∩F=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cap \mathcal{F} = \emptyset$$\end{document}. O’Neill and Verstraëte determined the maximum size of a non-trivial r-wise intersecting family for n sufficiently large. Actually, the Hilton–Milner–Frankl Theorem implies O’Neill–Verstraëte's result for n≥r(k-r+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq r(k-r + 2)$$\end{document}. In the present paper, we show that the same result holds for a certain range when n is close to 2k.
引用
收藏
页码:510 / 523
页数:13
相关论文
共 50 条
  • [1] NON-TRIVIAL r-WISE INTERSECTING FAMILIES
    Frankl, P.
    Wang, J.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (02) : 510 - 523
  • [2] Non-trivial r-wise agreeing families
    Frankl, Peter
    Kupavskii, Andrey
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 126
  • [3] Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [4] Non-trivial d-wise intersecting families
    O'Neill, Jason
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [5] Non-trivial 3-wise intersecting uniform families
    Tokushige, Norihide
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [6] The maximum measure of non-trivial 3-wise intersecting families
    Tokushige, Norihide
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 643 - 676
  • [7] The maximum measure of non-trivial 3-wise intersecting families
    Norihide Tokushige
    Mathematical Programming, 2024, 204 : 643 - 676
  • [8] Triangles in r-wise t-intersecting families
    Liao, Jiaqi
    Cao, Mengyu
    Lu, Mei
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 112
  • [9] Weighted non-trivial multiply intersecting families
    Frankl, P
    Tokushige, N
    COMBINATORICA, 2006, 26 (01) : 37 - 46
  • [10] Weighted Non-Trivial Multiply Intersecting Families
    Peter Frankl
    Norihide Tokushige
    Combinatorica, 2006, 26 : 37 - 46