Column enumeration based decomposition techniques for a class of non-convex MINLP problems

被引:0
|
作者
Steffen Rebennack
Josef Kallrath
Panos M. Pardalos
机构
[1] University of Florida,Center of Applied Optimization
[2] University of Florida,Department of Astronony
来源
关键词
MINLP; Column enumeration; Decomposition; Packing;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are computed via subproblems. These problems can be linear, mixed integer linear, (non-)convex nonlinear, or mixed integer nonlinear. However, the important property of the subproblems is that we can compute their exact global optimum quickly. The proposed technique will be illustrated solving a cutting problem with optimum nonlinear programming subproblems.
引用
收藏
页码:277 / 297
页数:20
相关论文
共 50 条
  • [41] On solving generalized convex MINLP problems using supporting hyperplane techniques
    Tapio Westerlund
    Ville-Pekka Eronen
    Marko M. Mäkelä
    Journal of Global Optimization, 2018, 71 : 987 - 1011
  • [42] THE DUALITY OF CERTAIN NON-CONVEX EXTREMAL PROBLEMS
    SOLOVYEV, VN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 93 - 96
  • [43] On Graduated Optimization for Stochastic Non-Convex Problems
    Hazan, Elad
    Levy, Kfir Y.
    Shalev-Shwartz, Shai
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [44] EXISTENCE OF SOLUTIONS FOR NON-CONVEX OPTIMIZATION PROBLEMS
    BARANGER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 307 - &
  • [45] Collective choice functions on non-convex problems
    Mariotti, M
    ECONOMIC THEORY, 2000, 16 (02) : 457 - 463
  • [46] THEOREM OF EXISTENCE IN NON-CONVEX OPTIMIZATION PROBLEMS
    NIFTIYEV, AA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1983, 4 (05): : 115 - 119
  • [47] Exact relaxations of non-convex variational problems
    Meziat, Rene
    Patino, Diego
    OPTIMIZATION LETTERS, 2008, 2 (04) : 505 - 519
  • [48] The Nash bargaining theory with non-convex problems
    Zhou, L
    ECONOMETRICA, 1997, 65 (03) : 681 - 685
  • [49] On radial solutions to non-convex variational problems
    FloresBazan, F
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (01): : 161 - 181
  • [50] Optimal storage design for a multi-product plant: A non-convex MINLP formulation
    Rebennack, Steffen
    Kallrath, Josef
    Pardalos, Panos M.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (02) : 255 - 271