An interpretable semi-supervised framework for patch-based classification of breast cancer

被引:0
|
作者
Radwa El Shawi
Khatia Kilanava
Sherif Sakr
机构
[1] Tartu University,Institute of Computer Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Developing effective invasive Ductal Carcinoma (IDC) detection methods remains a challenging problem for breast cancer diagnosis. Recently, there has been notable success in utilizing deep neural networks in various application domains; however, it is well-known that deep neural networks require a large amount of labelled training data to achieve high accuracy. Such amounts of manually labelled data are time-consuming and expensive, especially when domain expertise is required. To this end, we present a novel semi-supervised learning framework for IDC detection using small amounts of labelled training examples to take advantage of cheap available unlabeled data. To gain trust in the prediction of the framework, we explain the prediction globally. Our proposed framework consists of five main stages: data augmentation, feature selection, dividing co-training data labelling, deep neural network modelling, and the interpretability of neural network prediction. The data cohort used in this study contains digitized BCa histopathology slides from 162 women with IDC at the Hospital of the University of Pennsylvania and the Cancer Institute of New Jersey. To evaluate the effectiveness of the deep neural network model used by the proposed approach, we compare it to different state-of-the-art network architectures; AlexNet and a shallow VGG network trained only on the labelled data. The results show that the deep neural network used in our proposed approach outperforms the state-of-the-art techniques achieving balanced accuracy of 0.73 and F-measure of 0.843. In addition, we compare the performance of the proposed semi-supervised approach to state-of-the-art semi-supervised DCGAN technique and self-learning technique. The experimental evaluation shows that our framework outperforms both semi-supervised techniques and detects IDC with an accuracy of 85.75%, a balanced accuracy of 0.865, and an F-measure of 0.773 using only 10% labelled instances from the training dataset while the rest of the training dataset is treated as unlabeled.
引用
收藏
相关论文
共 50 条
  • [31] Combining Semi-supervised Clustering and Classification Under a Generalized Framework
    Jiang, Zhen
    Zhao, Lingyun
    Lu, Yu
    JOURNAL OF CLASSIFICATION, 2024, : 181 - 204
  • [32] Semi-supervised graph learning framework for apicomplexan parasite classification
    Ha, Yan
    Meng, Xiangjie
    Du, Zeyu
    Tian, Junfeng
    Yuan, Yu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 81
  • [33] A semi-supervised autoencoder framework for joint generation and classification of breathing
    Pastor-Serrano, Oscar
    Lathouwers, Danny
    Perko, Zoltan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 209
  • [34] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)
  • [35] A Semi-Supervised and Incremental Modeling Framework for Wafer Map Classification
    Kong, Yuting
    Ni, Dong
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2020, 33 (01) : 62 - 71
  • [36] Semi-supervised classification trees
    Levatic, Jurica
    Ceci, Michelangelo
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2017, 49 (03) : 461 - 486
  • [37] Interpretable Graph-Based Semi-Supervised Learning via Flows
    Rustamov, Raif M.
    Klosowski, James T.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3976 - 3983
  • [38] Watersheds for Semi-Supervised Classification
    Challa, Aditya
    Danda, Sravan
    Sagar, B. S. Daya
    Najman, Laurent
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 720 - 724
  • [39] Semi-supervised classification trees
    Jurica Levatić
    Michelangelo Ceci
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2017, 49 : 461 - 486
  • [40] PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification
    Nauta, Meike
    Schloetterer, Joerg
    van Keulen, Maurice
    Seifert, Christin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 2744 - 2753