An efficient tool for solving the Rosenau–Burgers equation in two dimensions

被引:0
|
作者
Asma Rouatbi
Ahlem Ghiloufi
Khaled Omrani
机构
[1] Institut Préparatoire aux Etudes d’Ingénieur de Nabeul,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique
[2] Université de Carthage,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique, Mathematics Department
[3] Khurmah University College,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique
[4] Taif University,undefined
[5] Institut Supérieur des Sciences Appliquées et de Technologie de Sousse,undefined
[6] Université de Sousse,undefined
[7] Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar,undefined
[8] Université de Tunis El Manar,undefined
来源
关键词
Rosenau–Burgers equation; Linearized difference scheme; Unique solvability; Stability; Convergence; 65M06; 65M12; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, a linearized Crank–Nicolson difference scheme for the two-dimensional Rosenau–Burgers equation is proposed. The solvability, stability and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} convergence have been proved by the energy method. All the outcome results are reached without any restrictions on the mesh sizes. The new scheme is shown to be second-order convergent in time and space. Some numerical examples are carried out to verify our theoretical results. The numerical checks of the linearized difference scheme are compared with the exact solutions and also compared with earlier published results. It is found that the proposed method produces more accurate results than the others available in the literature.
引用
收藏
相关论文
共 50 条
  • [1] An efficient tool for solving the Rosenau-Burgers equation in two dimensions
    Rouatbi, Asma
    Ghiloufi, Ahlem
    Omrani, Khaled
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05):
  • [2] Two efficient numerical methods for solving Rosenau-KdV-RLW equation
    Ozer, Sibel
    [J]. KUWAIT JOURNAL OF SCIENCE, 2021, 48 (01) : 14 - 24
  • [3] On the numerical solution of two-dimensional Rosenau–Burgers (RB) equation
    Khaled Omrani
    Hajer Debebria
    Khedidja Bayarassou
    [J]. Engineering with Computers, 2022, 38 : 715 - 726
  • [4] On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation
    Omrani, Khaled
    Debebria, Hajer
    Bayarassou, Khedidja
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 715 - 726
  • [5] A better asymptotic profile of Rosenau-Burgers equation
    Liu, LP
    Mei, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (01) : 147 - 170
  • [6] Haar Wavelet Method for the Rosenau-Burgers Equation
    Qu Liangzhu
    Li Desheng
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 467 - 470
  • [7] On the convergence of operator splitting for the Rosenau-Burgers equation
    Zurnaci, Fatma
    Seydaoglu, Muaz
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1363 - 1382
  • [8] An efficient numerical technique for solving time fractional Burgers equation
    Akram, Tayyaba
    Abbas, Muhammad
    Riaz, Muhammad Bilal
    Ismail, Ahmad Izani
    Ali, Norhashidah Mohd
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2201 - 2220
  • [9] A new finite difference scheme for the Rosenau-Burgers equation
    Pan, Xintian
    Zhang, Luming
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8917 - 8924
  • [10] Numerical Methods for a Shallow Water Rosenau-Burgers Equation
    Jun, Zhang
    [J]. 2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252