An efficient tool for solving the Rosenau–Burgers equation in two dimensions

被引:0
|
作者
Asma Rouatbi
Ahlem Ghiloufi
Khaled Omrani
机构
[1] Institut Préparatoire aux Etudes d’Ingénieur de Nabeul,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique
[2] Université de Carthage,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique, Mathematics Department
[3] Khurmah University College,Laboratoire: Physique, Mathématique, Modélisation Quantique et Conception Mécanique
[4] Taif University,undefined
[5] Institut Supérieur des Sciences Appliquées et de Technologie de Sousse,undefined
[6] Université de Sousse,undefined
[7] Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar,undefined
[8] Université de Tunis El Manar,undefined
来源
关键词
Rosenau–Burgers equation; Linearized difference scheme; Unique solvability; Stability; Convergence; 65M06; 65M12; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, a linearized Crank–Nicolson difference scheme for the two-dimensional Rosenau–Burgers equation is proposed. The solvability, stability and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} convergence have been proved by the energy method. All the outcome results are reached without any restrictions on the mesh sizes. The new scheme is shown to be second-order convergent in time and space. Some numerical examples are carried out to verify our theoretical results. The numerical checks of the linearized difference scheme are compared with the exact solutions and also compared with earlier published results. It is found that the proposed method produces more accurate results than the others available in the literature.
引用
收藏
相关论文
共 50 条
  • [31] Solving the Vlasov equation in two spatial dimensions with the Schrodinger method
    Kopp, Michael
    Vattis, Kyriakos
    Skordis, Constantinos
    [J]. PHYSICAL REVIEW D, 2017, 96 (12)
  • [32] Efficient and accurate finite difference schemes for solving one-dimensional Burgers' equation
    Liao, Wenyuan
    Zhu, Jianping
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (12) : 2575 - 2590
  • [33] A two-grid spectral method to study of dynamics of dense discrete systems governed by Rosenau-Burgers? equation
    Abbaszadeh, Mostafa
    Zaky, Mahmoud A.
    Hendy, Ahmed S.
    Dehghan, Mehdi
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 187 : 262 - 276
  • [34] SOLUTION FILTERING TECHNIQUE FOR SOLVING BURGERS' EQUATION
    Yang, Tianliang
    McDonough, J. M.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 951 - 959
  • [35] Solving Burgers' Equation Using Multithreading and GPU
    Kuo, Sheng-Hsiu
    Hsieh, Chih-Wei
    Lin, Reui-Kuo
    Sheu, Wen-Hann
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT 2, PROCEEDINGS, 2010, 6082 : 297 - +
  • [36] A novel numerical scheme for solving Burgers' equation
    Xu, Min
    Wang, Ren-Hong
    Zhang, Ji-Hong
    Fang, Qin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4473 - 4482
  • [37] A lumped Galerkin method for solving the Burgers equation
    Kutluay, S
    Esen, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (11) : 1433 - 1444
  • [38] Multilevel augmentation methods for solving the Burgers' equation
    Chen, Jian
    Chen, Zhongying
    Cheng, Sirui
    Zhan, Jiemin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1665 - 1691
  • [39] Conjugate filter approach for solving Burgers' equation
    Wei, GW
    Gu, Y
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (02) : 439 - 456
  • [40] An exponentially fitted method for solving Burgers' equation
    Ozis, Turgut
    Erdogan, Utku
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (06) : 696 - 705