On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation

被引:14
|
作者
Omrani, Khaled [1 ]
Debebria, Hajer [2 ]
Bayarassou, Khedidja [3 ]
机构
[1] Univ Sousse, Inst Super Sci Appliquees & Technol Sousse, Sousse Ibn Khaldoun 4003, Sousse, Tunisia
[2] Univ Carthage, Ecole Polytech Tunis, Rue El Khawarezmi, La Marsa 2078, Tunisia
[3] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, 4011 H Sousse,Rue L Abassi, Sousse, Tunisia
关键词
Rosenau-Burgers equation; Finite element method; Semidiscrete scheme; Fully discrete method; Linearized difference scheme; Error estimates; FINITE-DIFFERENCE SCHEME;
D O I
10.1007/s00366-020-01055-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Our purpose is to solve numerically the nonlinear evolutionary problem called Rosenau-Burgers (RB) equation. First, we have derived error estimates of semidiscrete finite element method for the approximation of the Rosenau-Burgers problem. For a second-order accuracy in time, we propose the Galerkin-Crank-Nicolson fully discrete method. Second, a linearized difference scheme for the Rosenau-Burgers equation is considered. It is proved that the proposed difference scheme is uniquely solvable, and the method is shown to be second-order convergent both in time and space in maximum norm. Finally, some numerical experiments are given to demonstrate the validity and accuracy of our linearized difference scheme.
引用
收藏
页码:715 / 726
页数:12
相关论文
共 50 条
  • [1] On the numerical solution of two-dimensional Rosenau–Burgers (RB) equation
    Khaled Omrani
    Hajer Debebria
    Khedidja Bayarassou
    [J]. Engineering with Computers, 2022, 38 : 715 - 726
  • [2] Numerical Methods for a Shallow Water Rosenau-Burgers Equation
    Jun, Zhang
    [J]. 2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [3] QUINTIC B-SPLINE METHOD FOR NUMERICAL SOLUTION OF THE ROSENAU-BURGERS EQUATION
    Abazari, Reza
    Yildirim, Kenan
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (03): : 967 - 979
  • [4] Blowup of solutions of the three-dimensional Rosenau-Burgers equation
    M. O. Korpusov
    [J]. Theoretical and Mathematical Physics, 2012, 170 : 280 - 286
  • [5] Blowup of solutions of the three-dimensional Rosenau-Burgers equation
    Korpusov, M. O.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) : 280 - 286
  • [6] An efficient tool for solving the Rosenau-Burgers equation in two dimensions
    Rouatbi, Asma
    Ghiloufi, Ahlem
    Omrani, Khaled
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05):
  • [7] On the convergence of operator splitting for the Rosenau-Burgers equation
    Zurnaci, Fatma
    Seydaoglu, Muaz
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1363 - 1382
  • [8] Haar Wavelet Method for the Rosenau-Burgers Equation
    Qu Liangzhu
    Li Desheng
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 467 - 470
  • [9] Numerical Analysis of A Mixed Finite Element Method for Rosenau-Burgers Equation
    Wang, Jinfeng
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL INDUSTRIAL INFORMATICS AND COMPUTER ENGINEERING CONFERENCE, 2015, : 610 - 614
  • [10] A better asymptotic profile of Rosenau-Burgers equation
    Liu, LP
    Mei, M
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (01) : 147 - 170