On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation

被引:14
|
作者
Omrani, Khaled [1 ]
Debebria, Hajer [2 ]
Bayarassou, Khedidja [3 ]
机构
[1] Univ Sousse, Inst Super Sci Appliquees & Technol Sousse, Sousse Ibn Khaldoun 4003, Sousse, Tunisia
[2] Univ Carthage, Ecole Polytech Tunis, Rue El Khawarezmi, La Marsa 2078, Tunisia
[3] Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, 4011 H Sousse,Rue L Abassi, Sousse, Tunisia
关键词
Rosenau-Burgers equation; Finite element method; Semidiscrete scheme; Fully discrete method; Linearized difference scheme; Error estimates; FINITE-DIFFERENCE SCHEME;
D O I
10.1007/s00366-020-01055-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Our purpose is to solve numerically the nonlinear evolutionary problem called Rosenau-Burgers (RB) equation. First, we have derived error estimates of semidiscrete finite element method for the approximation of the Rosenau-Burgers problem. For a second-order accuracy in time, we propose the Galerkin-Crank-Nicolson fully discrete method. Second, a linearized difference scheme for the Rosenau-Burgers equation is considered. It is proved that the proposed difference scheme is uniquely solvable, and the method is shown to be second-order convergent both in time and space in maximum norm. Finally, some numerical experiments are given to demonstrate the validity and accuracy of our linearized difference scheme.
引用
收藏
页码:715 / 726
页数:12
相关论文
共 50 条