On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime

被引:0
|
作者
François Golse
Shi Jin
Thierry Paul
机构
[1] École polytechnique,CMLS
[2] Shanghai Jiao Tong University,School of Mathematical Sciences, Institute of Natural Sciences, MOE
[3] École polytechnique,LSC
[4] Sorbonne Université,CNRS and CMLS
关键词
Evolutionary equations; Time-dependent Schrödinger equations; Exponential operator splitting methods; Wasserstein distance; 65L05; 65M12; 65J10; 81C05;
D O I
暂无
中图分类号
学科分类号
摘要
By using the pseudo-metric introduced in Golse and Paul (Arch Ration Mech Anal 223:57–94, 2017), which is an analogue of the Wasserstein distance of exponent 2 between a quantum density operator and a classical (phase-space) density, we prove that the convergence of time splitting algorithms for the von Neumann equation of quantum dynamics is uniform in the Planck constant ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document}. We obtain explicit uniform in ħ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar $$\end{document} error estimates for the first-order Lie–Trotter, and the second-order Strang splitting methods.
引用
收藏
页码:613 / 647
页数:34
相关论文
共 50 条
  • [1] On the Convergence of Time Splitting Methods for Quantum Dynamics in the Semiclassical Regime
    Golse, Francois
    Jin, Shi
    Paul, Thierry
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (03) : 613 - 647
  • [2] Computing quantum dynamics in the semiclassical regime
    Lasser, Caroline
    Lubich, Christian
    ACTA NUMERICA, 2020, 29 : 229 - 401
  • [3] Adaptive splitting methods for nonlinear Schrodinger equations in the semiclassical regime
    Auzinger, Winfried
    Kassebacher, Thomas
    Koch, Othmar
    Thalhammer, Mechthild
    NUMERICAL ALGORITHMS, 2016, 72 (01) : 1 - 35
  • [4] Adaptive splitting methods for nonlinear Schrödinger equations in the semiclassical regime
    Winfried Auzinger
    Thomas Kassebacher
    Othmar Koch
    Mechthild Thalhammer
    Numerical Algorithms, 2016, 72 : 1 - 35
  • [5] NOTION OF TIME AND THE SEMICLASSICAL REGIME OF QUANTUM-GRAVITY
    CASTAGNINO, MA
    MAZZITELLI, FD
    PHYSICAL REVIEW D, 1990, 42 (02): : 482 - 487
  • [6] On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime
    Bao, WZ
    Jin, S
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) : 487 - 524
  • [7] Convergence of a semiclassical wavepacket based time-splitting for the Schrodinger equation
    Gradinaru, Vasile
    Hagedorn, George A.
    NUMERISCHE MATHEMATIK, 2014, 126 (01) : 53 - 73
  • [8] Efficient exponential splitting spectral methods for linear Schrodinger equation in the semiclassical regime
    Wang, Wansheng
    Tang, Jiao
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 (153) : 132 - 146
  • [9] Time-Dependent Quantum Perturbations Uniform in the Semiclassical Regime
    Golse, Francois
    Paul, Thierry
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (03) : 1273 - 1296
  • [10] Dynamics of quantum fluids: Path integral and semiclassical methods
    Makri, Nancy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231