A Newton's method for the continuous quadratic knapsack problem

被引:28
|
作者
Cominetti R. [1 ]
Mascarenhas W.F. [2 ]
Silva P.J.S. [3 ]
机构
[1] Departamento de Ingenieŕa Industrial, Universidad de Chile, Santiago
[2] Computer Science Department, University of São Paulo, São Paulo
[3] Applied Mathematics Department, University of Campinas, Campinas
基金
巴西圣保罗研究基金会;
关键词
Continuous quadratic knapsack; Duality; Semismooth Newton; Simplex projections;
D O I
10.1007/s12532-014-0066-y
中图分类号
学科分类号
摘要
We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after O(n) iterations with overall arithmetic complexity O(n2). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, and is faster than the state-of-the-art algorithms based on median finding, variable fixing, and secant techniques. © Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013.
引用
收藏
页码:151 / 169
页数:18
相关论文
共 50 条
  • [41] Strategic oscillation for the quadratic multiple knapsack problem
    Garcia-Martinez, Carlos
    Glover, Fred
    Rodriguez, Francisco J.
    Lozano, Manuel
    Marti, Rafael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (01) : 161 - 185
  • [42] Lagrangian matheuristics for the Quadratic Multiple Knapsack Problem
    Galli, Laura
    Martello, Silvano
    Rey, Carlos
    Toth, Paolo
    DISCRETE APPLIED MATHEMATICS, 2023, 335 : 36 - 51
  • [43] A mini-swarm for the quadratic knapsack problem
    Xie, Xiao-Feng
    Liu, Jiming
    2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 190 - +
  • [44] Strategic oscillation for the quadratic multiple knapsack problem
    Carlos García-Martínez
    Fred Glover
    Francisco J. Rodriguez
    Manuel Lozano
    Rafael Martí
    Computational Optimization and Applications, 2014, 58 : 161 - 185
  • [45] A semidefinite programming approach to the quadratic knapsack problem
    Helmberg, C
    Rendl, F
    Weismantel, R
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (02) : 197 - 215
  • [46] A genetic algorithm for the quadratic multiple knapsack problem
    Sarac, Tugba
    Sipahioglu, Aydin
    ADVANCES IN BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4729 : 490 - +
  • [47] A Dynamic Programming Heuristic for the Quadratic Knapsack Problem
    Fomeni, Franklin Djeumou
    Letchford, Adam N.
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (01) : 173 - 182
  • [48] A Cooperative Learning Approach for the Quadratic Knapsack Problem
    Lalla-Ruiz, Eduardo
    Segredo, Eduardo
    Voss, Stefan
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 31 - 35
  • [49] Algebraic rules for quadratic regularization of Newton's method
    Karas, Elizabeth W.
    Santos, Sandra A.
    Svaiter, Benar F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (02) : 343 - 376