A Newton's method for the continuous quadratic knapsack problem

被引:28
|
作者
Cominetti R. [1 ]
Mascarenhas W.F. [2 ]
Silva P.J.S. [3 ]
机构
[1] Departamento de Ingenieŕa Industrial, Universidad de Chile, Santiago
[2] Computer Science Department, University of São Paulo, São Paulo
[3] Applied Mathematics Department, University of Campinas, Campinas
基金
巴西圣保罗研究基金会;
关键词
Continuous quadratic knapsack; Duality; Semismooth Newton; Simplex projections;
D O I
10.1007/s12532-014-0066-y
中图分类号
学科分类号
摘要
We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after O(n) iterations with overall arithmetic complexity O(n2). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, and is faster than the state-of-the-art algorithms based on median finding, variable fixing, and secant techniques. © Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013.
引用
收藏
页码:151 / 169
页数:18
相关论文
共 50 条
  • [21] Parametric convex quadratic relaxation of the quadratic knapsack problem
    Fampa, M.
    Lubke, D.
    Wang, F.
    Wolkowicz, H.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 281 (01) : 36 - 49
  • [22] Fast Algorithm for the Quadratic Knapsack Problem
    Plotkin, A. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 57 - 63
  • [23] Fast Algorithm for the Quadratic Knapsack Problem
    A. V. Plotkin
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 57 - 63
  • [24] Asymptotic behavior of the quadratic knapsack problem
    Schauer, Joachim
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 255 (02) : 357 - 363
  • [25] A Reactive Search for the Quadratic Knapsack Problem
    Al-Iedani, Najat
    Hifi, Mhand
    Saadi, Toufik
    2017 4TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2017, : 495 - 499
  • [26] Lagrangian heuristics for the Quadratic Knapsack Problem
    Cunha, Jesus Ossian
    Simonetti, Luidi
    Lucena, Abilio
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) : 97 - 120
  • [27] Exact solution of the Quadratic Knapsack Problem
    Caprara, A
    Pisinger, D
    Toth, P
    INFORMS JOURNAL ON COMPUTING, 1999, 11 (02) : 125 - 137
  • [28] Lagrangian heuristics for the Quadratic Knapsack Problem
    Jesus Ossian Cunha
    Luidi Simonetti
    Abilio Lucena
    Computational Optimization and Applications, 2016, 63 : 97 - 120
  • [29] A CONIC APPROXIMATION METHOD FOR THE 0-1 QUADRATIC KNAPSACK PROBLEM
    Zhou, Jing
    Chen, Dejun
    Wang, Zhenbo
    Xing, Wenxun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (03) : 531 - 547
  • [30] An effective hybrid search method for the quadratic knapsack problem with conflict graphs
    Zhou, Qing
    Hao, Jin-Kao
    Jiang, Zhong-Zhong
    Wu, Qinghua
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2024, 75 (05) : 1000 - 1010