Groups whose non-linear irreducible characters are rational valued

被引:0
|
作者
M. R. Darafsheh
A. Iranmanesh
S. A. Moosavi
机构
[1] University of Tehran,School of Mathematics, College of Science
[2] Tarbiat Modares University,Department of Mathematics, Faculty of Mathematical Sciences
[3] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
20C15; -groups; 067 ; -group; Frobenius group; Solvable group; Nilpotent group; Vanishing-off subgroup; Rational valued character;
D O I
暂无
中图分类号
学科分类号
摘要
A finite group G all of whose nonlinear irreducible characters are rational is called a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}_1}$$\end{document}-group. In this paper, we obtain some results concerning the structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}_1}$$\end{document}-groups.
引用
收藏
页码:411 / 418
页数:7
相关论文
共 50 条
  • [41] On the Irreducible Characters of the Groups Sn and An
    V. A. Belonogov
    [J]. Siberian Mathematical Journal, 2004, 45 : 806 - 820
  • [42] Rational groups and integer-valued characters of Thompson group Th
    Hesam Sharifi
    [J]. Journal of Mathematical Chemistry, 2011, 49 : 1416 - 1423
  • [43] On the irreducible characters of the groups Sn and An
    Belonogov, VA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (05) : 806 - 820
  • [44] A NON-LINEAR SEMIGROUP WHOSE GENERATOR IS NOT DISSIPATIVE
    BUSENBERG, SN
    TRAVIS, CC
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (03): : 363 - 372
  • [45] Odd-degree Rational Irreducible Characters
    Tiep, Pham Huu
    Tong-Viet, Hung P.
    [J]. ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 293 - 304
  • [46] Odd-degree Rational Irreducible Characters
    Pham Huu Tiep
    Hung P. Tong-Viet
    [J]. Acta Mathematica Vietnamica, 2022, 47 : 293 - 304
  • [47] Groups with only two nonlinear non-faithful irreducible characters
    Xiaoyou Chen
    Mark L. Lewis
    [J]. Czechoslovak Mathematical Journal, 2019, 69 : 427 - 429
  • [48] Zeros of irreducible characters in factorised groups
    Felipe, M. J.
    Martinez-Pastor, A.
    Ortiz-Sotomayor, V. M.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 129 - 142
  • [49] Irreducible products of characters of solvable groups
    Fukushima, Hiroshi
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (01) : 312 - 315
  • [50] Irreducible characters of 3′-degree of finite symmetric, general linear and unitary groups
    Giannelli, Eugenio
    Tent, Joan
    Pham Huu Tiep
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2199 - 2228