A finite group G all of whose nonlinear irreducible characters are rational is called a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{Q}_1}$$\end{document}-group. In this paper, we obtain some results concerning the structure of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{Q}_1}$$\end{document}-groups.
机构:
Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-3209 Pietermaritzburg, South AfricaUniv KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-3209 Pietermaritzburg, South Africa
机构:
Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R ChinaSichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R China
Zhang, Jinshan
Shi, Jiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, LMAM, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaSichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R China
Shi, Jiangtao
Shen, Zhencai
论文数: 0引用数: 0
h-index: 0
机构:
Suzhou Univ, Sch Math, Suzhou 215006, Peoples R ChinaSichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R China