Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media

被引:0
|
作者
Chunhua Wang
Jing Zhou
机构
[1] Central China Normal University,School of Mathematics and Statistics and Hubei Key Laboratory Mathematical Sciences
[2] South-Central University for Nationalities,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
nonlinearities; second-harmonic generation; synchronized solution; reduction method; 35J10; 35B99; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following coupled Schrödinger system with χ(2) nonlinearities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\{ \begin{array}{l} - \Delta {u_1} + {V_1}\left( x \right){u_1} = \alpha {u_1}{u_2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ - \Delta {u_2} + {V_2}\left( x \right){u_2} = \frac{\alpha }{2}u_1^2 + \beta u_2^2,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ \end{array} \right.$\end{document} which arises from second-harmonic generation in quadratic media. Here V1(x) and V2(x) are radially positive functions, 2 ≤ N < 6, α > 0 and α > β. Assume that the potential functions V1(x) and V2(x) satisfy some algebraic decay at infinity. Applying the finite dimensional reduction method, we construct an unbounded sequence of non-radial vector solutions of synchronized type.
引用
收藏
页码:16 / 34
页数:18
相关论文
共 50 条
  • [31] Planar second-harmonic generation with noncollinear pumps in disordered media
    Roppo, Vito
    Dumay, David
    Trull, Jose
    Cojocaru, Crina
    Saltiel, Solomon M.
    Staliunas, Kestutis
    Vilaseca, Ramon
    Neshev, Dragomir N.
    Krolikowski, Wieslaw
    Kivshar, Yuri S.
    OPTICS EXPRESS, 2008, 16 (18): : 14192 - 14199
  • [33] SECOND-HARMONIC GENERATION IN CENTRO-SYMMETRIC MEDIA.
    Epperlein, D.
    Dick, B.
    Marowsky, G.
    Reider, G.A.
    Applied physics. B, Photophysics and laser chemistry, 1987, B44 (01): : 5 - 10
  • [34] SECOND-HARMONIC GENERATION IN MOLYBDATES
    JEGGO, CR
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (11): : L133 - +
  • [35] Quasipatterns in second-harmonic generation
    Longhi, S
    PHYSICAL REVIEW E, 1999, 59 (01) : R24 - R27
  • [36] Adiabatic second-harmonic generation
    Leshem, Anat
    Meshulam, Guilia
    Porat, Gil
    Arie, Ady
    OPTICS LETTERS, 2016, 41 (06) : 1229 - 1232
  • [37] Second-harmonic generation imaging
    Gauderon, R
    Lukins, PB
    Sheppard, CJR
    OPTICS AND LASERS IN BIOMEDICINE AND CULTURES OWLS V, 2000, 5 : 66 - 69
  • [38] Infinitely many solitary waves of an integrable equation with singularity
    Pan, Chaohong
    Liu, Zhengrong
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1469 - 1475
  • [39] Infinitely many solitary waves of an integrable equation with singularity
    Chaohong Pan
    Zhengrong Liu
    Nonlinear Dynamics, 2016, 83 : 1469 - 1475
  • [40] Quasipatterns in second-harmonic generation
    Phys Rev E., 1-B (R24):