Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media

被引:0
|
作者
Chunhua Wang
Jing Zhou
机构
[1] Central China Normal University,School of Mathematics and Statistics and Hubei Key Laboratory Mathematical Sciences
[2] South-Central University for Nationalities,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2020年 / 40卷
关键词
nonlinearities; second-harmonic generation; synchronized solution; reduction method; 35J10; 35B99; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following coupled Schrödinger system with χ(2) nonlinearities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\{ \begin{array}{l} - \Delta {u_1} + {V_1}\left( x \right){u_1} = \alpha {u_1}{u_2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ - \Delta {u_2} + {V_2}\left( x \right){u_2} = \frac{\alpha }{2}u_1^2 + \beta u_2^2,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ \end{array} \right.$\end{document} which arises from second-harmonic generation in quadratic media. Here V1(x) and V2(x) are radially positive functions, 2 ≤ N < 6, α > 0 and α > β. Assume that the potential functions V1(x) and V2(x) satisfy some algebraic decay at infinity. Applying the finite dimensional reduction method, we construct an unbounded sequence of non-radial vector solutions of synchronized type.
引用
收藏
页码:16 / 34
页数:18
相关论文
共 50 条
  • [21] Second-harmonic generation of Bessel beams in lossy media
    Ding, DS
    Xu, JY
    Wang, YJ
    CHINESE PHYSICS LETTERS, 2002, 19 (05) : 689 - 690
  • [22] Enhanced second-harmonic generation in media with a weak periodicity
    Haus, J.W.
    Viswanathan, R.
    Scalora, M.
    Kalocsai, A.G.
    Cole, J.D.
    Theimer, J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (03):
  • [24] Second-harmonic generation in second-harmonic fiber Bragg gratings
    Steel, MJ
    deSterke, CM
    APPLIED OPTICS, 1996, 35 (18) : 3211 - 3222
  • [25] On second harmonic generation and the onset of simultaneous capillary-gravity solitary waves (simultons or quadratic solitons)
    Huang, GX
    Velarde, MG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (01): : 13 - 18
  • [26] Review on second-harmonic generation of ultrasonic guided waves in solid media (I): Theoretical analyses
    Li, Wei-Bin
    Deng, Ming-Xi
    Xiang, Yan-Xun
    CHINESE PHYSICS B, 2017, 26 (11)
  • [27] Solitary-wave vortices in type II second-harmonic generation
    Torres, JP
    Soto-Crespo, JM
    Torner, L
    Petrov, DV
    OPTICS COMMUNICATIONS, 1998, 149 (1-3) : 77 - 83
  • [28] Nonlinear X waves in second-harmonic generation: Experimental results
    Jedrkiewicz, O
    Trull, J
    Valiulis, G
    Piskarskas, A
    Conti, C
    Trillo, S
    Di Trapani, P
    PHYSICAL REVIEW E, 2003, 68 (02): : 1 - 026610
  • [29] Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity
    Skryabin, DV
    Yulin, AV
    Maimistov, AI
    PHYSICAL REVIEW LETTERS, 2006, 96 (16)
  • [30] Spatiotemporal toroidal waves from the transverse second-harmonic generation
    Saltiel, Solomon M.
    Neshev, Dragomir N.
    Fischer, Robert
    Krolikowski, Wieslaw
    Arie, Ady
    Kivsharl, Yuri S.
    OPTICS LETTERS, 2008, 33 (05) : 527 - 529