Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks

被引:0
|
作者
R. D. Parsons
S. Ohm
机构
[1] Max-Planck-Institut für Kernphysik,Institut für Physik
[2] DESY,undefined
[3] Humboldt-Universität zu Berlin,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a new, high performance algorithm for background rejection in imaging atmospheric Cherenkov telescopes. We build on the already popular machine-learning techniques used in gamma-ray astronomy by the application of the latest techniques in machine learning, namely recurrent and convolutional neural networks, to the background rejection problem. Use of these machine-learning techniques addresses some of the key challenges encountered in the currently implemented algorithms and helps to significantly increase the background rejection performance between 100 GeV and 100 TeV energies. We apply these machine learning techniques to the H.E.S.S. telescope array, first testing their performance on simulated data and then applying the analysis to two well known gamma-ray sources. With real observational data we find significantly improved performance over the current standard methods, with a 20–25% reduction in the background rate when applying the recurrent neural network analysis. Importantly, we also find that the convolutional neural network results are strongly dependent on the sky brightness in the source region which has important implications for the future implementation of this method in Cherenkov telescope analyses.
引用
收藏
相关论文
共 50 条
  • [41] Stock Market Trend Prediction Using Recurrent Convolutional Neural Networks
    Xu, Bo
    Zhang, Dongyu
    Zhang, Shaowu
    Li, Hengchao
    Lin, Hongfei
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 166 - 177
  • [42] Smoke Detection on Video Sequences Using Convolutional and Recurrent Neural Networks
    Filonenko, Alexander
    Kurnianggoro, Laksono
    Jo, Kang-Hyun
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2017, PT II, 2017, 10449 : 558 - 566
  • [43] MRI Rician Noise Reduction Using Recurrent Convolutional Neural Networks
    Gurrola-Ramos, Javier
    Alarcon, Teresa
    Dalmau, Oscar
    Manjon, Jose V.
    IEEE ACCESS, 2024, 12 : 128272 - 128284
  • [44] Violence Detection in Videos using Deep Recurrent and Convolutional Neural Networks
    Traore, Abdarahmane
    Akhloufi, Moulay A.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 154 - 159
  • [45] JOINT SPEAKER DIARIZATION AND RECOGNITION USING CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS
    Zhou, Zhihan
    Zhang, Yichi
    Duan, Zhiyao
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2496 - 2500
  • [46] Parapred: antibody paratope prediction using convolutional and recurrent neural networks
    Liberis, Edgar
    Velickovic, Petar
    Sormanni, Pietro
    Vendruscolo, Michele
    Lio, Pietro
    BIOINFORMATICS, 2018, 34 (17) : 2944 - 2950
  • [47] Speech Emotion Recognition using Convolutional Recurrent Neural Networks and Spectrograms
    Qamhan, Mustafa A.
    Meftah, Ali H.
    Selouani, Sid-Ahmed
    Alotaibi, Yousef A.
    Zakariah, Mohammed
    Seddiq, Yasser Mohammad
    2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
  • [48] LOWLATENCY SOUND SOURCE SEPARATION USING CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Naithani, Gaurav
    Barker, Tom
    Parascandolo, Giambattista
    Bramslow, Lars
    Pontoppidan, Niels Henrik
    Virtanen, Tuomas
    2017 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2017, : 71 - 75
  • [49] Recurrent Convolutional Neural Networks for Scene Labeling
    Pinheiro, Pedro O.
    Collobert, Ronan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [50] Gated Graph Convolutional Recurrent Neural Networks
    Ruiz, Luana
    Gama, Fernando
    Ribeiro, Alejandro
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,