Speech Emotion Recognition using Convolutional Recurrent Neural Networks and Spectrograms

被引:4
|
作者
Qamhan, Mustafa A. [1 ]
Meftah, Ali H. [1 ]
Selouani, Sid-Ahmed [2 ]
Alotaibi, Yousef A. [1 ]
Zakariah, Mohammed [1 ]
Seddiq, Yasser Mohammad [3 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
[2] Univ Moncton, 218 Bvd J Gauthier, Shippegan, NB E8S 1P6, Canada
[3] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia
关键词
emotion; classification; Arabic; spectrograms; CNN; LSTM;
D O I
10.1109/ccece47787.2020.9255752
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this study, a speech emotion recognition technique based on a deep learning neural network that uses the King Saud University Emotions' Arabic dataset is presented. The convolutional neural network and long short-term memory (LSTM) are used to design the primary system of the convolutional recurrent neural network (CRNN). This study further investigates the use of linearly spaced spectrograms as inputs to the emotional speech recognizers. The performance of the CRNN system is compared with the results obtained through an experiment evaluating the human capability to perceive the emotion from speech. This human perceptual evaluation is considered as the baseline system. The overall CRNN system achieves 84.55% and 77.51% accuracies for file and segment levels, respectively. These values of accuracy are considerably close to the human emotion perception scores.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Speech Emotion Recognition using Convolutional and Recurrent Neural Networks
    Lim, Wootaek
    Jang, Daeyoung
    Lee, Taejin
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [2] IMPROVING CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR SPEECH EMOTION RECOGNITION
    Meyer, Patrick
    Xu, Ziyi
    Fingscheidt, Tim
    2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT), 2021, : 365 - 372
  • [3] Emotion Recognition from Speech using Spectrograms and Shallow Neural Networks
    Slimi, Anwer
    Hamroun, Mohamed
    Zrigui, Mounir
    Nicolas, Henri
    MOMM 2020: THE 18TH INTERNATIONAL CONFERENCE ON ADVANCES IN MOBILE COMPUTING & MULTIMEDIA, 2020, : 35 - 39
  • [4] Speech Emotion Recognition Using Convolutional-Recurrent Neural Networks with Attention Model
    Mu, Yawei
    Gomez, Hernandez
    Cano Montes, Antonio
    Alcaraz Martinez, Carlos
    Wang, Xuetian
    Gao, Hongmin
    2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY, CII 2017, 2017, : 341 - 350
  • [5] Speech Emotion Recognition from Spectrograms with Deep Convolutional Neural Network
    Badshah, Abdul Malik
    Ahmad, Jamil
    Rahim, Nasir
    Baik, Sung Wook
    2017 INTERNATIONAL CONFERENCE ON PLATFORM TECHNOLOGY AND SERVICE (PLATCON), 2017, : 125 - 129
  • [6] SPEECH EMOTION RECOGNITION USING QUATERNION CONVOLUTIONAL NEURAL NETWORKS
    Muppidi, Aneesh
    Radfar, Martin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6309 - 6313
  • [7] Multiple attention convolutional-recurrent neural networks for speech emotion recognition
    Zhang, Zhihao
    Wang, Kunxia
    2022 10TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS, ACIIW, 2022,
  • [8] COMPACT CONVOLUTIONAL RECURRENT NEURAL NETWORKS VIA BINARIZATION FOR SPEECH EMOTION RECOGNITION
    Zhao, Huan
    Xiao, Yufeng
    Han, Jing
    Zhang, Zixing
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 6690 - 6694
  • [9] Speech Emotion Recognition Using Convolutional Neural Networks with Attention Mechanism
    Mountzouris, Konstantinos
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    Corchado, Juan M.
    Iglesias, Carlos A.
    Kim, Byung-Gyu
    Mehmood, Rashid
    Ren, Fuji
    Lee, In
    ELECTRONICS, 2023, 12 (20)
  • [10] Enhancing Speech Emotion Recognition Using Deep Convolutional Neural Networks
    Islam, M. M. Manjurul
    Kabir, Md Alamgir
    Sheikh, Alamin
    Saiduzzaman, Muhammad
    Hafid, Abdelakram
    Abdullah, Saad
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 95 - 100