Chebyshev Polynomials on Generalized Julia Sets

被引:0
|
作者
Gökalp Alpan
机构
[1] Bilkent University,Department of Mathematics
关键词
Chebyshev polynomials; Extremal polynomials; Julia sets; Widom factors; 37F10; 41A50;
D O I
暂无
中图分类号
学科分类号
摘要
Let (fn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_n)_{n=1}^\infty $$\end{document} be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z):=(fm∘fm-1⋯∘f1)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z):=(f_m\circ f_{m-1}\cdots \circ f_1)(z)$$\end{document} and ρm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _m$$\end{document} be the leading coefficient of Fm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m$$\end{document}. It is shown that on the Julia set J(fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{(f_n)}$$\end{document}, the Chebyshev polynomial of degree degFm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg {F_m}$$\end{document} is of the form Fm(z)/ρm-τm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z)/\rho _m-\tau _m$$\end{document} for all m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {N}$$\end{document} where τm∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _m\in \mathbb {C}$$\end{document}. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994).
引用
收藏
页码:387 / 393
页数:6
相关论文
共 50 条
  • [41] Generalized Markoff equations and Chebyshev polynomials
    McGinn, Donald
    JOURNAL OF NUMBER THEORY, 2015, 152 : 1 - 20
  • [42] Chebyshev Polynomials and Generalized Complex Numbers
    D. Babusci
    G. Dattoli
    E. Di Palma
    E. Sabia
    Advances in Applied Clifford Algebras, 2014, 24 : 1 - 10
  • [43] Generalized Chebyshev polynomials of the second kind
    Alqudah, Mohammad A.
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (06) : 842 - 850
  • [44] Some identities for generalized Chebyshev polynomials
    Borzov, V. V.
    Damaskinsky, E., V
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD) 2019, 2019, : 17 - 21
  • [45] CARTOGRAPHICAL GROUPS AND GENERALIZED CHEBYSHEV POLYNOMIALS
    KOCHETKOV, YY
    RUSSIAN MATHEMATICAL SURVEYS, 1994, 49 (06) : 203 - 204
  • [46] Chebyshev Polynomials and Generalized Complex Numbers
    Babusci, D.
    Dattoli, G.
    Di Palma, E.
    Sabia, E.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (01) : 1 - 10
  • [47] Computer evaluation of generalized Chebyshev polynomials
    Matiyasevich, YV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (06): : 59 - 61
  • [48] Evolutionary exploration of generalized Julia sets
    Ashlock, Daniel
    Jamieson, Brooke
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN IMAGE AND SIGNAL PROCESSING, 2007, : 163 - 170
  • [49] Parameter identification of generalized Julia sets
    Sun Jie
    Liu Shu-Tang
    Qiao Wei
    ACTA PHYSICA SINICA, 2011, 60 (07)
  • [50] Generalized adding machines and Julia sets
    Messaoudi, Ali
    Valle, Glauco
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (11) : 1096 - 1100