Chebyshev Polynomials on Generalized Julia Sets

被引:0
|
作者
Gökalp Alpan
机构
[1] Bilkent University,Department of Mathematics
关键词
Chebyshev polynomials; Extremal polynomials; Julia sets; Widom factors; 37F10; 41A50;
D O I
暂无
中图分类号
学科分类号
摘要
Let (fn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_n)_{n=1}^\infty $$\end{document} be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z):=(fm∘fm-1⋯∘f1)(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z):=(f_m\circ f_{m-1}\cdots \circ f_1)(z)$$\end{document} and ρm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _m$$\end{document} be the leading coefficient of Fm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m$$\end{document}. It is shown that on the Julia set J(fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{(f_n)}$$\end{document}, the Chebyshev polynomial of degree degFm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg {F_m}$$\end{document} is of the form Fm(z)/ρm-τm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_m(z)/\rho _m-\tau _m$$\end{document} for all m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \mathbb {N}$$\end{document} where τm∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _m\in \mathbb {C}$$\end{document}. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994).
引用
收藏
页码:387 / 393
页数:6
相关论文
共 50 条