Chebyshev polynomials;
Extremal polynomials;
Julia sets;
Widom factors;
37F10;
41A50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let (fn)n=1∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(f_n)_{n=1}^\infty $$\end{document} be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z):=(fm∘fm-1⋯∘f1)(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_m(z):=(f_m\circ f_{m-1}\cdots \circ f_1)(z)$$\end{document} and ρm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho _m$$\end{document} be the leading coefficient of Fm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_m$$\end{document}. It is shown that on the Julia set J(fn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_{(f_n)}$$\end{document}, the Chebyshev polynomial of degree degFm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\deg {F_m}$$\end{document} is of the form Fm(z)/ρm-τm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_m(z)/\rho _m-\tau _m$$\end{document} for all m∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\in \mathbb {N}$$\end{document} where τm∈C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _m\in \mathbb {C}$$\end{document}. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994).
机构:
Univ Juarez Autonoma Tabasco, Div Acad Ciencias Basicas, Av Univ S-N, Cunduacan 86690, Tabasco, MexicoUniv Juarez Autonoma Tabasco, Div Acad Ciencias Basicas, Av Univ S-N, Cunduacan 86690, Tabasco, Mexico
Manuel Martinez, Luis
Ble, Gamaliel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Juarez Autonoma Tabasco, Div Acad Ciencias Basicas, Av Univ S-N, Cunduacan 86690, Tabasco, MexicoUniv Juarez Autonoma Tabasco, Div Acad Ciencias Basicas, Av Univ S-N, Cunduacan 86690, Tabasco, Mexico