Rigidity of Riemannian embeddings of discrete metric spaces

被引:0
|
作者
Matan Eilat
Bo’az Klartag
机构
[1] Weizmann Institute of Science,Department of Mathematics
来源
Inventiones mathematicae | 2021年 / 226卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complete, connected Riemannian surface and suppose that S⊂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}\subset M$$\end{document} is a discrete subset. What can we learn about M from the knowledge of all Riemannian distances between pairs of points of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}? We prove that if the distances in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} correspond to the distances in a 2-dimensional lattice, or more generally in an arbitrary net in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, then M is isometric to the Euclidean plane. We thus find that Riemannian embeddings of certain discrete metric spaces are rather rigid. A corollary is that a subset of Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^3$$\end{document} that strictly contains Z2×{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2 \times \{ 0 \}$$\end{document} cannot be isometrically embedded in any complete Riemannian surface.
引用
收藏
页码:349 / 391
页数:42
相关论文
共 50 条