Quasi-Shadowing for Partially Hyperbolic Flows with a Local Product Structure

被引:0
|
作者
Lin Wang
机构
[1] Shanxi University of Finance and Economics,School of Applied Mathematics
关键词
Partial hyperbolicity; Quasi-Shadowing; Local product structure; Flow; Primary: 37C50; 37D30; Secondary: 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
Let a flow ϕt be partially hyperbolic on Λ. If Λ has a local product structure, then ϕt has the quasi-shadowing property on Λ in the following sense: for any 𝜖 > 0, there exists constant δ > 0 such that for any (δ,1)-pseudo orbit {xk,tk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x_{k}, t_{k}\}_{k\in \mathbb {Z}}$\end{document} of ϕt with 1 ≤ tk ≤ 2 for all k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\in \mathbb {Z}$\end{document}, there exist a sequence of points {yk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{y_{k}\}_{k\in \mathbb {Z}}$\end{document} and a reparametrization α∈Rep(ℝ,𝜖)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in Rep(\mathbb {R},\epsilon )$\end{document} such that ϕα(t)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−Σk(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-{\Sigma }_{k}}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(Σk+1)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha ({\Sigma }_{k+1})-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} for k ≥ 0 t ≥ 0 and ϕα(t)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−(−Σk)(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-(-{\Sigma }_{k})}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(−Σk+1)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (-{\Sigma }_{k+1})-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} for k < 0, t < 0.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 50 条
  • [41] Local Unstable Entropy and Local Unstable Pressure for Partially Hyperbolic Endomorphisms
    WANG, Xinsheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (01) : 137 - 160
  • [42] SRB measures for partially hyperbolic attractors of local diffeomorphisms
    Cruz, Anderson
    Varandas, Paulo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (06) : 1545 - 1593
  • [43] LOCAL-STRUCTURE AND SMOOTHNESS PREVENTING QUASI-MINIMALITY FOR FLOWS ON THE TORUS
    ARANSON, SK
    ZHUZHOMA, EV
    MALKIN, MI
    DIFFERENTIAL EQUATIONS, 1993, 29 (06) : 789 - 791
  • [44] On local rigidity of partially hyperbolic affine Zk actions
    Damjanovic, Danijela
    Fayad, Bassam
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 1 - 26
  • [45] Quasi-Product Flows on a C*-Algebra
    Akitaka Kishimoto
    Communications in Mathematical Physics, 2002, 229 : 397 - 413
  • [46] Quasi-product flows on a C*-algebra
    Kishimoto, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (03) : 397 - 413
  • [47] Dimension and product structure of hyperbolic measures
    Barreira, L
    Pesin, Y
    Schmeling, J
    ANNALS OF MATHEMATICS, 1999, 149 (03) : 755 - 783
  • [48] Dimension product structure of hyperbolic sets
    Hasselblatt, B
    Schmeling, J
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 : 88 - 96
  • [49] On mixing and the local central limit theorem for hyperbolic flows
    Dolgopyat, Dmitry
    Nandori, Peter
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (01) : 142 - 174
  • [50] Asymptotic phase for flows with exponentially stable partially hyperbolic invariant manifolds
    Luchko, Alina
    Parasyuk, Igor
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (36) : 1 - 28