Quasi-Shadowing for Partially Hyperbolic Flows with a Local Product Structure

被引:0
|
作者
Lin Wang
机构
[1] Shanxi University of Finance and Economics,School of Applied Mathematics
关键词
Partial hyperbolicity; Quasi-Shadowing; Local product structure; Flow; Primary: 37C50; 37D30; Secondary: 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
Let a flow ϕt be partially hyperbolic on Λ. If Λ has a local product structure, then ϕt has the quasi-shadowing property on Λ in the following sense: for any 𝜖 > 0, there exists constant δ > 0 such that for any (δ,1)-pseudo orbit {xk,tk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x_{k}, t_{k}\}_{k\in \mathbb {Z}}$\end{document} of ϕt with 1 ≤ tk ≤ 2 for all k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\in \mathbb {Z}$\end{document}, there exist a sequence of points {yk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{y_{k}\}_{k\in \mathbb {Z}}$\end{document} and a reparametrization α∈Rep(ℝ,𝜖)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in Rep(\mathbb {R},\epsilon )$\end{document} such that ϕα(t)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−Σk(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-{\Sigma }_{k}}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(Σk+1)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha ({\Sigma }_{k+1})-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} for k ≥ 0 t ≥ 0 and ϕα(t)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−(−Σk)(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-(-{\Sigma }_{k})}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(−Σk+1)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (-{\Sigma }_{k+1})-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} for k < 0, t < 0.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 50 条
  • [21] Partially hyperbolic geodesic flows
    Carneiro, Fernando
    Pujals, Enrique
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05): : 985 - 1014
  • [22] Asymptotic quasi-shadowing and generic points via mean orbital pseudo-metric
    Fu, Heman
    Kuang, Rui
    Ma, Dongkui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 443 - 462
  • [23] Partially hyperbolic geodesic flows are Anosov
    Contreras, G
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (07) : 585 - 590
  • [24] Accessibility and centralizers for partially hyperbolic flows
    Fisher, Todd
    Hasselblatt, Boris
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (03) : 835 - 854
  • [25] Parabolic flows renormalized by partially hyperbolic maps
    Butterley, Oliver
    Simonelli, Lucia D.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (03): : 341 - 360
  • [26] Parabolic flows renormalized by partially hyperbolic maps
    Oliver Butterley
    Lucia D. Simonelli
    Bollettino dell'Unione Matematica Italiana, 2020, 13 : 341 - 360
  • [27] QUASI-STABILITY OF PARTIALLY HYPERBOLIC DIFFEOMORPHISMS
    Hu, Huyi
    Zhu, Yujun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) : 3787 - 3804
  • [28] LOCAL RIGIDITY OF PARTIALLY HYPERBOLIC ACTIONS
    Wang, Zhenqi Jenny
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (02) : 271 - 327
  • [29] LOCAL RIGIDITY OF PARTIALLY HYPERBOLIC ACTIONS
    Wang, Zhenqi Jenny
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2010, 17 : 68 - 79
  • [30] Entropy of partially hyperbolic flows with center dimension two
    Roldan, Mario
    Saghin, Radu
    Yang, Jiagang
    NONLINEARITY, 2020, 33 (02) : 790 - 806