Topological and geometric aspects of almost Kähler manifolds via harmonic theory

被引:0
|
作者
Joana Cirici
Scott O. Wilson
机构
[1] Universitat de Barcelona,Department of Mathematics and Computer Science
[2] City University of New York,Department of Mathematics, Queens College
来源
Selecta Mathematica | 2020年 / 26卷
关键词
Almost Kähler manifolds; Kähler identities; Kähler package; Hodge decomposition; Hard Lefschetz; Harmonic forms; Almost complex manifolds; Symplectic manifolds; 32Q60; 53C15; 53D05;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known Kähler identities naturally extend to the non-integrable setting. This paper deduces several geometric and topological consequences of these extended identities for compact almost Kähler manifolds. Among these are identities of various Laplacians, generalized Hodge and Serre dualities, a generalized hard Lefschetz duality, and a Lefschetz decomposition, all on the space of d-harmonic forms of pure bidegree. There is also a generalization of Hodge Index Theorem for compact almost Kähler 4-manifolds. In particular, these provide topological bounds on the dimension of the space of d-harmonic forms of pure bidegree, as well as several new obstructions to the existence of a symplectic form compatible with a given almost complex structure.
引用
收藏
相关论文
共 50 条
  • [31] Geometric Schrdinger-Airy Flows on Khler Manifolds
    Xiao Wei SUN
    You De WANG
    Acta Mathematica Sinica, 2013, 29 (02) : 209 - 240
  • [32] A Geometric Interpretation of the χy Genus¶on Hyper-Kähler Manifolds
    George Thompson
    Communications in Mathematical Physics, 2000, 212 : 649 - 652
  • [33] Geometric Schrdinger-Airy Flows on Khler Manifolds
    Xiao Wei SUN
    You De WANG
    Acta Mathematica Sinica,English Series, 2013, (02) : 209 - 240
  • [34] Geometric Schrdinger-Airy Flows on Khler Manifolds
    Xiao Wei SUN
    You De WANG
    数学学报(中文版), 2013, 56 (02) : 293 - 293
  • [35] Geometric Schrödinger-Airy flows on Kähler manifolds
    Xiao Wei Sun
    You De Wang
    Acta Mathematica Sinica, English Series, 2013, 29 : 209 - 240
  • [36] $L^2$ harmonic forms on some complete Kähler manifolds
    Jeffery D. McNeal
    Mathematische Annalen, 2002, 323 : 319 - 349
  • [37] Harmonic morphisms and moment maps on hyper-Kähler manifolds
    M. Benyounes
    E. Loubeau
    R. Pantilie
    manuscripta mathematica, 2017, 153 : 373 - 388
  • [38] Local models and integrability of certain almost Kähler 4-manifolds
    Vestislav Apostolov
    John Armstrong
    Tedi Drăghici
    Mathematische Annalen, 2002, 323 : 633 - 666
  • [39] Self-dual almost-Kähler four-manifolds
    Kim, Inyoung
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (04)
  • [40] Local Rigidity of Certain Classes of Almost Kähler 4-Manifolds
    Vestislav Apostolov
    John Armstrong
    Tedi Drăghici
    Annals of Global Analysis and Geometry, 2002, 21 : 151 - 176