A Geometric Interpretation of the χy Genus¶on Hyper-Kähler Manifolds

被引:0
|
作者
George Thompson
机构
[1] ICTP,
[2] P.O. Box 586,undefined
[3] 34100 Trieste,undefined
[4] Italy. E-mail: thompson@ictp.trieste.it,undefined
来源
关键词
Manifold; Cohomology Group; Geometric Interpretation; Mapping Torus; Super Trace;
D O I
暂无
中图分类号
学科分类号
摘要
The group SL(2) acts on the space of cohomology groups of any hyper-Kähler manifold X. The χy genus of a hyper-Kähler X is shown to have a geometric interpretation as the super trace of an element of SL(2). As a by product one learns that the generalized Casson invariant for a mapping torus is essentially the χy genus.
引用
收藏
页码:649 / 652
页数:3
相关论文
共 50 条
  • [1] Hyper-Kähler Manifolds
    Olivier Debarre
    Milan Journal of Mathematics, 2022, 90 : 305 - 387
  • [2] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [3] Hyper-Kähler manifolds and nonlinear supermultiplets
    Krivonos S.O.
    Shcherbakov A.V.
    Physics of Particles and Nuclei Letters, 2007, 4 (1) : 55 - 59
  • [4] On Hyper-Kähler Manifolds of Type A∞ and D∞
    Ryushi Goto
    Communications in Mathematical Physics, 1998, 198 : 469 - 491
  • [5] On Some Birational Invariants of Hyper-Kähler Manifolds
    Bai, Chenyu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) : 8628 - 8637
  • [6] The Volume Growth of Hyper-Kähler Manifolds of Type A∞
    Kota Hattori
    Journal of Geometric Analysis, 2011, 21 : 920 - 949
  • [7] On the Hodge and Betti Numbers of Hyper-Kähler Manifolds
    Pietro Beri
    Olivier Debarre
    Milan Journal of Mathematics, 2022, 90 : 417 - 431
  • [8] Quaternionic contact hypersurfaces in hyper-Kähler manifolds
    Stefan Ivanov
    Ivan Minchev
    Dimiter Vassilev
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 245 - 267
  • [9] Harmonic morphisms and moment maps on hyper-Kähler manifolds
    M. Benyounes
    E. Loubeau
    R. Pantilie
    manuscripta mathematica, 2017, 153 : 373 - 388
  • [10] Groups Acting on Moduli Spaces of Hyper-Kähler Manifolds
    Rizzo, Francesca
    MILAN JOURNAL OF MATHEMATICS, 2024, 92 (01) : 169 - 193