Smoothing Method for Minimax Problems

被引:0
|
作者
Song Xu
机构
[1] Lattice Semiconductor Corporations,
关键词
minimax; smoothing method; global convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a smoothing method for minimax problem. The method is based on the exponential penalty function of Kort and Bertsekas for constrained optimization. Under suitable condition, the method is globally convergent. Preliminary numerical experiments indicate the promising of the algorithm.
引用
收藏
页码:267 / 279
页数:12
相关论文
共 50 条
  • [41] A new class of smoothing functions and a smoothing Newton method for complementarity problems
    Zhu, Jianguang
    Hao, Binbin
    [J]. OPTIMIZATION LETTERS, 2013, 7 (03) : 481 - 497
  • [42] Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems
    L. Qi
    D. Sun
    [J]. Journal of Optimization Theory and Applications, 2002, 113 : 121 - 147
  • [43] Smoothing functions and smoothing Newton method for complementarity and variational inequality problems
    Qi, L
    Sun, D
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (01) : 121 - 147
  • [44] An ε-generalized gradient projection method for nonlinear minimax problems
    Guo-Dong Ma
    Jin-Bao Jian
    [J]. Nonlinear Dynamics, 2014, 75 : 693 - 700
  • [45] USE OF SINGULAR DISTURBANCE METHOD FOR SOLVING MINIMAX PROBLEMS
    GRACHEV, NI
    EVTUSHENKO, IG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1977, 233 (03): : 277 - 280
  • [46] An aggregate homotopy method for solving unconstrained minimax problems
    Zhou, Zhengyong
    Duan, Yarui
    [J]. OPTIMIZATION, 2021, 70 (08) : 1791 - 1808
  • [47] An ε-generalized gradient projection method for nonlinear minimax problems
    Ma, Guo-Dong
    Jian, Jin-Bao
    [J]. NONLINEAR DYNAMICS, 2014, 75 (04) : 693 - 700
  • [48] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    [J]. SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [49] A method for solving classical smoothing problems with obstacles
    Leetma, Evely
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2009, 58 (04) : 197 - 204
  • [50] An Optimal Multistage Stochastic Gradient Method for Minimax Problems
    Fallah, Alireza
    Ozdaglar, Asuman
    Pattathil, Sarath
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3573 - 3579