Smoothing Method for Minimax Problems

被引:0
|
作者
Song Xu
机构
[1] Lattice Semiconductor Corporations,
关键词
minimax; smoothing method; global convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a smoothing method for minimax problem. The method is based on the exponential penalty function of Kort and Bertsekas for constrained optimization. Under suitable condition, the method is globally convergent. Preliminary numerical experiments indicate the promising of the algorithm.
引用
收藏
页码:267 / 279
页数:12
相关论文
共 50 条
  • [31] DICHOTOMY METHOD IN CERTAIN MINIMAX PROBLEMS ON GRAPHS
    VAINSHTEIN, AD
    [J]. AUTOMATION AND REMOTE CONTROL, 1980, 41 (08) : 1111 - 1113
  • [32] A BARRIER FUNCTION-METHOD FOR MINIMAX PROBLEMS
    POLAK, E
    HIGGINS, JE
    MAYNE, DQ
    [J]. MATHEMATICAL PROGRAMMING, 1992, 54 (02) : 155 - 176
  • [33] A ROW RELAXATION METHOD FOR LARGE MINIMAX PROBLEMS
    DAX, A
    [J]. BIT, 1993, 33 (02): : 262 - 276
  • [34] Group Update Method for Sparse Minimax Problems
    Junxiang Li
    Mingsong Cheng
    Bo Yu
    Shuting Zhang
    [J]. Journal of Optimization Theory and Applications, 2015, 166 : 257 - 277
  • [35] Group Update Method for Sparse Minimax Problems
    Li, Junxiang
    Cheng, Mingsong
    Yu, Bo
    Zhang, Shuting
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) : 257 - 277
  • [36] A METHOD OF SOLVING MINIMAX PROBLEMS WITH DIFFERENTIAL CONNECTIONS
    GORLOV, VM
    [J]. ENGINEERING CYBERNETICS, 1984, 22 (04): : 125 - 129
  • [37] An algorithm based on active sets and smoothing for discretized semi-infinite minimax problems
    Polak, E.
    Womersley, R. S.
    Yin, H. X.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 138 (02) : 311 - 328
  • [38] An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems
    E. Polak
    R. S. Womersley
    H. X. Yin
    [J]. Journal of Optimization Theory and Applications, 2008, 138 : 311 - 328
  • [39] A smoothing trust-region Newton-CG method for minimax problem
    Ye, Feng
    Liu, Hongwei
    Zhou, Shuisheng
    Liu, Sanyang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 581 - 589
  • [40] A new class of smoothing functions and a smoothing Newton method for complementarity problems
    Jianguang Zhu
    Binbin Hao
    [J]. Optimization Letters, 2013, 7 : 481 - 497