Large time decay for the magnetohydrodynamics equations in Sobolev–Gevrey spaces

被引:0
|
作者
Robert Guterres
Wilberclay G. Melo
Juliana Nunes
Cilon Perusato
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
[2] Universidade Federal de Sergipe,Departamento de Matemática
[3] Universidade Federal do Rio Grande,Instituto de Matemática, Estatística e Física
[4] Universidade Federal de Pernambuco,Departamento de Matemática
来源
关键词
Magnetohydrodynamics equations; Sobolev–Gevrey spaces; Large time decay; 35B44; 35Q30; 76D03; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
Our paper shows that global solutions (u,b)∈C([0,∞);Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,\infty );H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document} of the Magnetohydrodynamics equations present the following asymptotic behavior: limt→∞ts2‖(u,b)(t)‖H˙a,σs(R3)2=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{t\rightarrow \infty }t^{\frac{s}{2}}\Vert (u,b)(t)\Vert ^2_{{\dot{H}}_{a,\sigma }^{s}({\mathbb {R}}^3)}=0, \end{aligned}$$\end{document}where a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document}, σ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 1$$\end{document}, s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document} and s≠3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ne 3/2$$\end{document}. It is important to point out that the assumption related to existence of global solutions for this same system can be made since the existence and uniqueness of local solutions were recently established; more precisely, it has been proved that there is a time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document} such that (u,b)∈C([0,T];Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,T];H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document}.
引用
收藏
页码:591 / 613
页数:22
相关论文
共 50 条