Large time decay for the magnetohydrodynamics equations in Sobolev–Gevrey spaces

被引:0
|
作者
Robert Guterres
Wilberclay G. Melo
Juliana Nunes
Cilon Perusato
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
[2] Universidade Federal de Sergipe,Departamento de Matemática
[3] Universidade Federal do Rio Grande,Instituto de Matemática, Estatística e Física
[4] Universidade Federal de Pernambuco,Departamento de Matemática
来源
关键词
Magnetohydrodynamics equations; Sobolev–Gevrey spaces; Large time decay; 35B44; 35Q30; 76D03; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
Our paper shows that global solutions (u,b)∈C([0,∞);Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,\infty );H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document} of the Magnetohydrodynamics equations present the following asymptotic behavior: limt→∞ts2‖(u,b)(t)‖H˙a,σs(R3)2=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{t\rightarrow \infty }t^{\frac{s}{2}}\Vert (u,b)(t)\Vert ^2_{{\dot{H}}_{a,\sigma }^{s}({\mathbb {R}}^3)}=0, \end{aligned}$$\end{document}where a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document}, σ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 1$$\end{document}, s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document} and s≠3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ne 3/2$$\end{document}. It is important to point out that the assumption related to existence of global solutions for this same system can be made since the existence and uniqueness of local solutions were recently established; more precisely, it has been proved that there is a time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document} such that (u,b)∈C([0,T];Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,T];H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document}.
引用
收藏
页码:591 / 613
页数:22
相关论文
共 50 条
  • [11] On Growth of Sobolev Norms in Linear Schrodinger Equations with Time Dependent Gevrey Potential
    Fang, Daoyuan
    Zhang, Qidi
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (02) : 151 - 180
  • [12] Asymptotic behavior of solutions for the 2D micropolar equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata F.
    Zingano, Paulo R.
    ASYMPTOTIC ANALYSIS, 2021, 123 (1-2) : 157 - 179
  • [13] On Growth of Sobolev Norms in Linear Schrödinger Equations with Time Dependent Gevrey Potential
    Daoyuan Fang
    Qidi Zhang
    Journal of Dynamics and Differential Equations, 2012, 24 : 151 - 180
  • [14] On the generalized Magnetohydrodynamics-α equations with fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces
    Melo, Wilberclay G.
    de Souza, Manasses
    Rosa Santos, Thyago Souza
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [15] Further decay results on the system of NLS equations in lower order Sobolev spaces
    Li, Chunhua
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 437 - 444
  • [16] Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in Rn
    Biagioni, HA
    Gramchev, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 140 - 165
  • [17] Decay Rates for Mild Solutions of the Quasi-Geostrophic Equation with Critical Fractional Dissipation in Sobolev-Gevrey Spaces
    Wilberclay G. Melo
    Natã Firmino Rocha
    Natielle dos Santos Costa
    Acta Applicandae Mathematicae, 2023, 186
  • [18] Decay Rates for Mild Solutions of the Quasi-Geostrophic Equation with Critical Fractional Dissipation in Sobolev-Gevrey Spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    dos Santos Costa, Natielle
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)
  • [19] Large Time Decay for the Magnetohydrodynamics System in (H) ovet dots (Rn)
    Melo, Wilberclay G.
    Perusato, Cilon F.
    Guterres, Robert H.
    Nunes, Juliana R.
    ACTA APPLICANDAE MATHEMATICAE, 2020, 168 (01) : 1 - 16
  • [20] Gevrey smoothing properties of the schroedinger evolution group in weighted sobolev spaces
    Taylor, Stephen W.
    Journal of Mathematical Analysis and Applications, 1995, 194 (01):