Large time decay for the magnetohydrodynamics equations in Sobolev–Gevrey spaces

被引:0
|
作者
Robert Guterres
Wilberclay G. Melo
Juliana Nunes
Cilon Perusato
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
[2] Universidade Federal de Sergipe,Departamento de Matemática
[3] Universidade Federal do Rio Grande,Instituto de Matemática, Estatística e Física
[4] Universidade Federal de Pernambuco,Departamento de Matemática
来源
关键词
Magnetohydrodynamics equations; Sobolev–Gevrey spaces; Large time decay; 35B44; 35Q30; 76D03; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
Our paper shows that global solutions (u,b)∈C([0,∞);Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,\infty );H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document} of the Magnetohydrodynamics equations present the following asymptotic behavior: limt→∞ts2‖(u,b)(t)‖H˙a,σs(R3)2=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{t\rightarrow \infty }t^{\frac{s}{2}}\Vert (u,b)(t)\Vert ^2_{{\dot{H}}_{a,\sigma }^{s}({\mathbb {R}}^3)}=0, \end{aligned}$$\end{document}where a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document}, σ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 1$$\end{document}, s>1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>1/2$$\end{document} and s≠3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ne 3/2$$\end{document}. It is important to point out that the assumption related to existence of global solutions for this same system can be made since the existence and uniqueness of local solutions were recently established; more precisely, it has been proved that there is a time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document} such that (u,b)∈C([0,T];Ha,σs(R3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in C([0,T];H_{a,\sigma }^s({\mathbb {R}}^3))$$\end{document}.
引用
收藏
页码:591 / 613
页数:22
相关论文
共 50 条
  • [1] Large time decay for the magnetohydrodynamics equations in Sobolev-Gevrey spaces
    Guterres, Robert
    Melo, Wilberclay G.
    Nunes, Juliana
    Perusato, Cilon
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (03): : 591 - 613
  • [2] Time decay rates for the generalized MHD-α equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rosa Santos, Thyago Souza
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6623 - 6644
  • [3] Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    Zingano, Paulo R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [4] LONG TIME DECAY FOR 3D NAVIER-STOKES EQUATIONS IN SOBOLEV-GEVREY SPACES
    Benameur, Jamel
    Jlali, Lotfi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [5] On the large time decay of asymmetric flows in homogeneous Sobolev spaces
    Guterres, R. H.
    Melo, W. G.
    Nunes, J. R.
    Perusato, C. F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) : 88 - 101
  • [6] Local existence results in Sobolev spaces for generalized magnetohydrodynamics equations
    Kim, Hyunseok
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5243 - 5265
  • [7] Decay of Dissipative Equations and Negative Sobolev Spaces
    Guo, Yan
    Wang, Yanjin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) : 2165 - 2208
  • [8] Gevrey class regularity of the magnetohydrodynamics equations
    Kim, S
    ANZIAM JOURNAL, 2002, 43 : 397 - 408
  • [9] On the blow-up criterion of magnetohydrodynamics equations in homogeneous Sobolev spaces
    Marcon, Diego
    Schutz, Lineia
    Ziebell, Juliana S.
    APPLICABLE ANALYSIS, 2018, 97 (10) : 1677 - 1687
  • [10] Linear inviscid damping in Sobolev and Gevrey spaces
    Zillinger, Christian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213