Singular Limit and Homogenization for Flame Propagation in Periodic Excitable Media

被引:0
|
作者
Luis A. Caffarelli
Ki-Ahm Lee
Antoine Mellet
机构
[1] University of Texas at Austin,Department of Mathematics
[2] Seoul National University,Laboratoire Mathématiques pour l’Industrie et la Physique
[3] Université P. Sabatier,undefined
关键词
Combustion; Activation Energy; Free Boundary; Boundary Problem; Excitable Medium;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a class of singular equations modelling the combustion of premixed gases in periodic media. The model involves two parameters: the period of the medium |L| and a singular parameter ɛ related to the activation energy. The existence of pulsating travelling fronts for fixed ɛ and |L| was proved by Berestycki & Hamel in [BH]. In the present paper, we investigate the behaviour of such solutions when [inline-graphic not available: see fulltext] More precisely, we establish that pulsating travelling fronts behave like travelling waves, when the period |L| is small and [inline-graphic not available: see fulltext]. We also study the convergence of the solution, as ɛ goes to zero (and |L| is fixed), toward a solution of a free boundary problem.
引用
收藏
页码:153 / 190
页数:37
相关论文
共 50 条
  • [41] Floquet wave homogenization of periodic anisotropic media
    Wang, L
    Rokhlin, SI
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 112 (01): : 38 - 45
  • [42] Unfolding homogenization in doubly periodic media and applications
    Bunoiu, Renata
    Donato, Patrizia
    APPLICABLE ANALYSIS, 2017, 96 (13) : 2218 - 2235
  • [43] Propagation of Curved Activation Fronts in Anisotropic Excitable Media
    V.G. Morozov
    N.V. Davydov
    V.A. Davydov
    Journal of Biological Physics, 1999, 25 : 87 - 100
  • [44] MECHANISM OF FORMATION OF CLOSED PROPAGATION PATHWAYS IN EXCITABLE MEDIA
    GULKO, FB
    PETROV, AA
    BIOFIZIKA, 1972, 17 (02): : 261 - &
  • [45] High-frequency homogenization for periodic media
    Craster, R. V.
    Kaplunov, J.
    Pichugin, A. V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120): : 2341 - 2362
  • [46] SINGULAR PERTURBATION-THEORY OF TRAVELING WAVES IN EXCITABLE MEDIA
    TYSON, JJ
    KEENER, JP
    PHYSICA D-NONLINEAR PHENOMENA, 1988, 32 (03) : 327 - 361
  • [47] Variational methods for the homogenization of periodic heterogeneous media
    Luciano, R
    Sacco, E
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1998, 17 (04) : 599 - 617
  • [48] Propagation of curved activation fronts in anisotropic excitable media
    Morozov, VG
    Davydov, NV
    Davydov, VA
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 87 - 100
  • [49] Design and control of wave propagation patterns in excitable media
    Sakurai, T
    Mihaliuk, E
    Chirila, F
    Showalter, K
    SCIENCE, 2002, 296 (5575) : 2009 - 2012
  • [50] Wave propagation in excitable media with randomly distributed obstacles
    ten Tusscher, KHWJ
    Panfilov, AV
    MULTISCALE MODELING & SIMULATION, 2005, 3 (02): : 265 - 282